VE07P00131KDA [KYOCERA AVX]

Varistor, 170V, 8.5J, Through Hole Mount;
VE07P00131KDA
型号: VE07P00131KDA
厂家: KYOCERA AVX    KYOCERA AVX
描述:

Varistor, 170V, 8.5J, Through Hole Mount

电阻器
文件: 总39页 (文件大小:477K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
A KYOCERA GROUP COMPANY  
TP C  
Zin c Ox id e Va ris t o rs  
 
Zinc Oxide Varistors  
Contents  
Page  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Selection Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Ordering Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
VE / VF Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Electrical Characteristics (VE / VF types) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
VN 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
VB 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Taping Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Quality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Manufacturing Process and Quality Assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
As we are anxious that our customers should benefit from the latest developments in technology and standards,  
AVX reserves the right to modify the characteristics published in this brochure.  
1
TP C  
Zinc Oxide Varistors  
General  
Metal Oxide Varistors are ceramic passive components  
made of zinc oxide sintered together with other metal oxide  
additives.  
They provide an excellent protective device for limiting surge  
voltages and absorbing energy pulses.  
Their very good price / performance ratio enables designers  
to optimize the transient protection function when designing  
the circuits.  
Varistors are Voltage Dependent Resistors whose  
resistance decreases drastically when voltage is increased.  
When connected in parallel with the equipment to protect,  
they divert the transients and avoid any further overvoltage  
on the equipment.  
Manufactured according to high level standards of quality  
and service, our Metal Oxide Varistors are widely used as  
protective devices in the telecommunications, industrial,  
automotive and consumer markets.  
2
TP C  
Zinc Oxide Varistors  
Introduction  
or, yet again, by changing the chemical composition of the  
varistor.  
ZINC OXIDE VARISTORS.  
PROTECTION FUNCTION  
APPLICATION  
The polycrystal is schematically represented in Figure 3. At  
room temperature the semiconducting grains have very low  
resistivity (a fews ohms/cm).  
Definition of the varistor effect  
The varistor effect is defined as being the property of any  
material whose electrical resistance changes non-linearly  
with the voltage applied to its terminals.  
In other words, within a given current range, the current-volt-  
age relationship can be expressed by the equation:  
Intergranular  
phase  
I = KV  
In which K represents a constant depending on the geome-  
try of the part and the technology used and the non-lin-  
earity factor.  
Zinc oxide  
grains  
Figure 3  
The higher the value of this factor, the greater the effect. The  
ideal (and theorical) case is shown in Figure1 where =  
whereas a linear material has an equation of I = f(V) obeying  
the well-known Ohms law (= 1).  
On the contrary, the resistivity of the second phase (or inter-  
granular layer) basically depends on the value of the applied  
voltage.  
If the voltage value is low, the phase is insulating (region I of  
the I = f(V) curve). As the voltage increases this phase  
becomes conductive (region II). At very high current values  
the resistivity of the grain can become preponderant and the  
I = f(V) curve tends towards a linear law (region III).  
The relationship between these two extreme cases is shown  
in Figure 2. It should be pointed out that the I = f(V) curve is  
symmetrical with respect to zero in the case of zinc oxide  
varistors.  
The curve I = f(V) for the different types can be found in cor-  
responding data sheets.  
Current  
Current  
= ϱ  
2 - Equivalent electrical circuit diagram  
= 1  
Figure 4 explains the behavior of a zinc oxide varistor. r rep-  
resents the equivalent resistance of all semiconducting  
grains and that of the intergranular layer (the value of which  
basically varies with the applied voltage). Cp corresponds to  
the equivalent capacitance of the intergranular layers.  
0
0
Voltage  
Voltage  
When the applied voltage is low, the resistivity of the inter-  
granular layer is quite high and the current passing through  
the ceramic is low. When the voltage increases, the resis-  
tance decreases (region II in Figure 5).  
Figure 1  
Figure 2  
ZINC OXIDE VARISTORS  
1-Composition of the material  
Zinc oxide varistors are a polycrystalline structured material  
consisting of semiconducting zinc oxide crystals and a sec-  
ond phase located at the boundaries of the crystals.  
When a certain voltage value is reached, becomes lower  
than r and the I = f(V) characteristic tends to become ohmic  
(region III).  
The equivalent capacitance due to the insulating layers  
depends on their chemical types and geometries.  
This second phase consists of a certain number of metallic  
oxides (Bi O3,MnO,Sb2O3, etc.). It forms the «heart»of the  
2
varistor effect since its electrical resistivity is a non-linear  
function of the applied voltage.  
III  
Zinc oxide  
grains  
r
{
II  
Current  
Thus, a zinc oxide varistor consists of a large number of  
boundaries (several millions) forming a series-parallel net-  
work of resistors and capacitors, appearing somewhat like a  
multijunction semiconductor.  
I
grains  
boundaries  
Cp  
{
>r >r r>␳  
Experimentally, it is found that the voltage drop (at 1mA) at  
each boundary is about 3V. The total voltage drop for the  
thickness of the material is proportional to the number N of  
Voltage  
ρ= f (V)  
boundaries.  
Figure 4  
Figure 5  
t
L
V
1mA  
3 N where N =  
Values of a few hundred picofarads are usually found with  
commonly used discs.  
in which L represents the average dimension of a zinc oxide  
grain and t the thickness of the material.  
Capacitance value decreases with the area of the ceramic.  
Consequently, this value is lower when maximum permissi-  
ble energy and current values in the varistor are low, since  
these latter parameters are related to the diameter of the  
disc.  
t
In other words: V 3 —  
1mA  
L
Thus, with a thickness of 1 mm and average dimension of  
L = 20 µ, we obtain a voltage of 150 V for a current of 1mA.  
The desired voltage at 1mA can thus be obtained either by  
changing the thickness of the disc or by controlling the aver-  
age dimension of the zinc oxide grain through heat treatment  
Capacitance values are not subject to outgoing inspection.  
3
TP C  
Zinc Oxide Varistors  
Introduction  
The A versus curve  
3 - Temperature influence on the I = f(V) characteristic  
A typical I = f(V) curve is given in Figure 6.  
A
Different distinct regions can be observed:  
0.5  
• The first one depends on the temperature and corre-  
sponds to low applied voltages (corresponding currents  
are in the range of the µA). Consequently, a higher leakage  
current is noticeable when temperature is increasing.  
• The second one shows less variation and corresponds to  
the nominal varistor voltage region (Figure 7). The temper-  
0.1  
ature  
coefficient of the  
varistor voltage  
at  
1
10 20  
50  
100  
1 mA is:  
Figure 8  
V/V  
T  
K =  
and has a negative value with  
K
< 9.10-4/°C  
For usual values of (30 to 40), the continuously dissipated  
power is about 7 times greater than that dissipated by a  
sinusoidal signal having the same peak value. For example,  
a protective varistor operating at RMS voltage of 250 V has  
a power dissipation of a few mW.  
As the temperature coefficient decreases with increasing  
current density, this curve also depends on the type of the  
varistor.  
• For higher voltages, the temperature has no significant  
influence. Practically the clamping voltages of the varistors  
are not affected by a temperature change.  
4.2 - Non-linearity coefficient  
The peak current and voltage values basically depend on the  
I = f(V) characteristic or, to be more precise, on the value of  
the coefficient defined by:  
V 1 mA  
V 1 mA  
(I)  
A
(% )  
log (I /I )  
1
2
10-3  
=  
log (V /V )  
1
2
10-4  
10-5  
10-6  
10-7  
10-8  
+2  
0
In which I and I are the current values corresponding to  
1
2
voltage values V and V .  
1
2
The value of depends on the technology used (chemical  
composition, heat synthesis, etc.). Nevertheless, the value is  
not constant over the entire current range (several decades).  
For example, Figure 9 shows the variation of this coefficient  
for currents ranging from 100 nA to 100 A. It can be seen  
that passes through a maximum value and always stays at  
high values, even at high levels of current.  
- 25  
0
25  
50  
75 100  
125  
-2  
-9.10-4 / °C  
- 4  
100°C  
75°C  
25°C  
(V)  
10-9  
10  
102  
103  
Figure 6  
Figure 7  
Log l1/ l  
l1  
l2  
Log V1/2V  
where  
= 10  
=
2
4 - Varistor characteristics  
The choice of a varistor for a specific application should be  
guided by the following major characteristics:  
60  
50  
1) Working or operating voltage (alternating or direct).  
2) Leakage current at the working voltage.  
3) Max. clamping voltage for a given current.  
4) Maximum current passing through the varistor.  
5) Energy of the pulse to be dissipated in the varistor.  
6) Average power to be dissipated.  
V1  
V2  
V1 = Voltage for l1  
V2 = Voltage for l2  
=
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
40  
30  
l1 > l2  
l1  
l2  
=
106  
l1  
l2  
=
103  
(I) A  
102  
4.1 - Max. operating voltage and leakage current  
The maximum operating voltage corresponds to the rest”  
state of the varistor. This “rest” voltage offers a low leakage  
current in order to limit the power consumption of the pro-  
tective device and not to disturb the circuit to be protected.  
The leakage currents usually have values in the range of a  
few micro-amperes.  
1.1  
10-6  
10-3  
10  
10  
20  
30  
Figure 9  
Figure 10  
The non-lineary of the varistor can be expressed in another  
way by the ratio of the voltages corresponding to 2 current  
values.  
PA = AV .lp = AKVp+1  
V
1
b =  
2
PA  
PC  
V
with  
= A  
Where:  
in which: A = a constant f(a)  
V voltage for current I  
1
1
K = a constant  
V voltage for current I  
2
2
(I = KVa).  
The curve giving  
versus the value of is shown in  
Figure10 for 2 ratios of I /I =10 and 10 .  
3
6
b
PC = dissipated power for a DC voltage Vp.  
1
2
4
TP C  
Zinc Oxide Varistors  
Introduction  
Opposite, we have expressed energy W calculated for  
different pulse shapes, assuming that the value of the  
coefficient a equals 30.  
4.3 - Clamping voltage  
It is the maximum residual voltage Vp across the varistor  
terminals for a through current Ip.  
The voltage value gives an indication on the protective func-  
tion of the varistor.  
a) Voltage surge  
Figure 11 - 12 - 13 - 14  
4.4 - Permissible peak current  
The value of the permissible peak current depends upon the  
varistor model and waveform (8 x 20 µs, 10 x 1000 µs, etc.).  
b) Current surge  
Figure 15 - 16 - 17 - 18  
It can be seen that, as a first approximation, the permissible  
peak current is proportional to the area of the varistor elec-  
trodes.  
If, for example, we take a current surge as shown in Figure  
19, we demonstrate that the dissipated energy is given by  
the approximate expression:  
By way of example, Table I gives the permissible peak cur-  
rent values for different diameters and for one current surge  
of waveform 8 x 20 µs.  
W = Vp Ip (1.4  
in which Vp is the peak voltagte value and Ip the peak current  
- 0.88  
) 10-6  
2
1
t
It corresponds to a maximum permissible variation of ±10%  
in the voltage measured at 1 mA dc after the surges.  
value.  
W is expressed in joules.  
Overloads greater than specified values may result in a  
change in varistor voltage by more than ±10% and  
irreversible change in the electrical properties.  
t in µseconds.  
Vp in volts.  
In case of heavy overload, surge currents beyond the spec-  
ified ratings will puncture the varistor element. In extreme  
cases, the varistor will burst.  
Ip in amperes.  
t
_
V = Vc Ic = KVc  
V
V = Vc  
I = KV  
V
Operating  
Voltage  
(V)  
Uncoated  
Disc  
л (mm)  
W
=
Ic Vc ␶  
W
=
310-2 Ic Vc  
I max.  
Vc  
Vc  
(A)  
400  
1200  
2500  
4500  
6500  
250  
250  
250  
250  
5
7
10  
14  
20  
Table I  
t
t
0
0
250  
Figure 11  
Figure 12  
t
_
-t  
V
V
V = Vc sin  
V = Vc exp  
1.4 ␶  
Permissible  
Current  
(A)  
Number of Current  
W
= 0.22 Ic Vc ␶  
W
=
4.5 10-2 Ic Vc  
Surges  
(8 x 20 µs)  
Vc  
Vc  
Table II  
Vc/2  
6500  
4000  
1000  
200  
1
2
t
102  
104  
t
0
I
0
I
Figure 13  
Figure 14  
The permissible peak current also depends on the number  
of current surges applied to the varistor. For example, Table  
II gives the permissible current values based on the number  
of consecutive surges of the same magnitude applied on  
varistor model VE24M00251K.  
t
_
I = Ic  
V = Ic  
W
=
Ic Vc  
W = 0.5 Ic Vc ␶  
Ic  
Ic  
Thus, the smaller the number of surges, the higher the per-  
missible current.  
t
t
0
0
I
4.5 - Permissible energy  
The notion of permissible energy relates much more to the  
active” state of the varistor than to its rest” state where the  
average power is the predominant notion.  
Figure 15  
Figure 16  
t
_
-t  
1.4 ␶  
I
I = Ic sin  
I = Ic exp  
Indeed, except in special cases, the overvoltages occur at  
random and not at a high repetition frequency.  
W
= 0.64 Ic Vc ␶  
W
= 1.4 Ic Vc ␶  
Ic  
Ic  
Therefore, aging of the varistor will be related to energy of  
the transient defined by the current and peak voltage values  
as well as the pulse shape.  
Ic/2  
t
t
0
0
Figure 17  
Figure 18  
5
TP C  
ZINC OXIDE VARISTORS  
Introduction  
Table III gives the energies calculated according to waveform  
in Figure 19.  
4.6 - Average dissipated power  
a) Average power dissipated in the rest” state  
a, a special  
Considering the high values of the coefficient  
attention is required concerning the dissipated power value in  
case of possible changes in the operating voltage.  
Current  
Ip  
Indeed, starting with the equation:  
I = KVa  
the average power dissipated by the varistor is given by the  
equation:  
Ip/2  
PC = KVa+1  
when a direct current voltage is applied, and  
2
0
Time  
1
PA = APC  
in the case of a sinusoidal voltage having the same peak value  
and direct current voltage value.  
Figure 19  
P/P  
0
105  
Table III  
= 50  
Vp  
Ip  
Waveform  
s)  
Energy  
= 30  
104  
(V)  
(A)  
(J )  
τ1  
τ2  
50  
20  
500  
500  
500  
300  
300  
300  
1.2  
8
10  
3
103  
102  
= 10  
10  
1000  
210  
The following changes are found when the varistor absorbs an  
energy greater than the maximum permissible value:  
10  
• Higher leakage current.  
• Decrease in the voltage at 1 mA.  
• Decrease in coefficient a.  
If the energy increases well beyond the maximum value, the  
1
1.1  
1.2  
1.3  
V/V  
0
characteristics degrade to such an extent that, even at the  
rated voltage, the varistor has a very low resistance value.  
Figure 20  
The permissible energy for a given varistor is mainly related  
to the size of the part. For example, Table IV gives the per-  
missible energy for different varistors sizes with an operating  
voltage of 250 V.  
The A value as a function of was given in Figure 8. A small  
change of the operating voltage can induce a dissipated  
power variation which is all the more greater since the value of  
exponent is high (Figure 20).  
It can be seen that a 10% change in the rated voltage increases  
the dissipated power by a factor of 20 when coefficient  
equals 30, and by a factor of 150 when the coefficient  
equals 50.  
Table IV  
Operating  
Voltage  
(V)  
Uncoated  
Disc  
ø (mm)  
Energy  
(J )  
Table V gives the power P dissipated at values of the applied  
direct current voltage when the value of equals 30.  
250  
250  
250  
250  
250  
5
7
10  
14  
20  
10  
21  
40  
72  
130  
b) Average power dissipated during the transient state  
If the transients to which the varistor is subjected are repeated at  
a sufficiently high frequency, there will be an increase T in the  
average temperature of the part given by the expression:  
T = P/d  
Table V  
in which P represents the average dissipated power which  
V–  
P
depends on the energy of the pulse and its repetition fre-  
quency and the dissipation factor in air of the unit.  
(V)  
(mW)  
0.5  
180  
220  
230  
This temperature rise should stay below the threshold indicated  
by the manufacturer or it may damage the component coat-  
ing resin or even cause thermal runaway of the ceramic.  
0.2  
0.75  
6
TP C  
Zinc Oxide Varistors  
Introduction  
5 - Response time of zinc oxide varistors  
6 - Varistor voltage (V )  
1mA  
5.1 - Intrinsic response time  
6.1 - Nominal varistor voltage (V )  
1mA  
This response time corresponds to the conduction mecha-  
nisms specific to semiconductors, therefore its value is quite  
low and is less than one nanosecond.  
The nominal voltage of a varistor (or varistor” voltage) is  
defined as the voltage drop across the varistor when a dc  
test current of 1 mA is applied to the component.  
It is defined at a temperature of 25°C.  
5.2 - Practical response time  
However, the response time will be modified for several  
reasons:  
This parameter is used as a standard to define the varistors  
but has no particular electrical or physical significance.  
• Parasitic capacitance of the component due to the insula-  
tion of the intergranular layers.  
6.2 - Tolerance on the varistor voltage  
The standard tolerance is ±10%. Other tolerances may be  
defined on custom design products.  
• Overshoot phenomenon occurring when the varistor is  
subjected to a voltage with a steep leading edge (Figure  
21) and causing a dynamic voltage peak greater than the  
static voltage by a few percent.  
To avoid any lack of understanding, different behaviors of  
Zn0 varistors should be noted when considering the mea-  
surement of V 1 mA.  
Impedance of the external circuit to the varistor.  
• The measurement time must not be too short to allow a  
break-in” stabilization of the varistor and not too long so  
the measurement is not affected by warming the varistor.  
The limits of V1mA for our products are given for a measure-  
ment time comprised between 100 ms and 300 ms. For  
times comprised between 30 ms and 1s, the varistor volt-  
age will differ typically by less than 2%.  
In conclusion, the practical response time of a zinc oxide  
varistor usually stays below 50 nanoseconds.  
Volts  
Generator at 50  
• The value of the peak varistor voltage measured with ac  
current will be slightly higher than the dc value.  
100  
• When the varistor has been submitted to unipolar stresses  
(pulses, dc life test, ...) the voltage-current characteristic  
becomes asymmetrical in polarity.  
80  
Generator at 50 Ω  
+ zinc oxide varistor  
60  
40  
20  
0
20  
40 60  
80  
Nanoseconds  
Figure 21  
7
TP C  
Zinc Oxide Varistors  
Applications  
1 - Principle of application  
Zinc oxide varistors are essentially used as protective  
devices for components or items of equipment subjected to  
electrical interference whether accidental or otherwise. To be  
more specific, there are two types of interference: those  
which can be controlled (switching of resistive or capacitive  
circuits) and those which occur at random (high voltage  
surges change in the power supply network, etc.)  
E
Id-cora-c  
“Rest” state  
Figure 22A  
The protection” function is related to the non-linear  
I = f(V) characteristic of the varistor. This component is  
always connected in parallel with the assembly E to be  
protected (Figure 22B).  
The varistors rest” state has a very high impedance (several  
megohms) in relation to the component to be protected  
and does not change the characteristics or the electric  
circuit.  
E
Ip  
Protective  
state  
In the presence of a transient, the varistor then has a very low  
impedance (a few ohms) and short circuits the component E.  
The rest” and operating states are shown in Figure 22A  
and 22B. In case of a current surge of a peak value Ip, the  
higher the non-linear coefficient is, the lower the voltage  
across the terminals of the component E will be:  
Figure 22B  
Vp = (Ip/K) 1/a  
In case of a voltage surge Vs, the varistor limits the voltage  
Rc  
Vp  
Vs  
across the terminals of component E to a value Vp via  
resistor Rc which can be the impedance of the source  
(Figure 23).  
E
2 - Main applications  
Varistors are widely used in the different electronic equipment:  
• telecommunication and data systems  
power supply units,  
Figure 23  
switching equipment,  
answering sets, ...  
industrial equipment  
control and alarm systems,  
proximity switches,  
transformers,  
motors,  
traffic lighting, ...  
• consumer electronics  
television and video sets,  
washing machines,  
electronic ballasts, ...  
• automotive  
all motor and electronic systems.  
8
TP C  
Zinc Oxide Varistors  
Applications  
Three typical examples of applications are shown to  
illustrate the “protection” function of zinc oxide  
varistors.  
1 - Protection of relay contacts  
It is a well-known fact that a sudden break in an inductive  
circuit causes an overvoltage which can seriously damage  
the contacts of relay due to arcing. Overvoltages of several  
thousand volts can occur across the terminals of unprotected  
relay contacts. This disadvantage can be overcome by limit-  
ing the overvoltage due to opening an inductive circuit to a  
level such that it cannot generate an arc. Such limitation is  
achieved by wiring a zinc oxide varistor in parallel across the  
terminals of the relay characterized by the value of its induc-  
tance coil L and its resistor R (Figure 24).  
Figure 25  
This overvoltage, which is excessive for the semiconductors,  
is limited by the presence of the varistor which absorbs the  
energy corresponding to the change of state of the primary  
circuit.  
The same varistor can also protect the rectifier bridge  
against overvoltages coming from the mains and reaching  
the secondary circuit via the stray capacitance of the trans-  
former.  
L
R
Another practical case to be considered involves closing of  
the primary circuit. If the circuit is closed when the primary  
voltage reaches its maximum value, the secondary voltage  
can be two times greater than its steady-state value.  
Although this case is less dangerous than the preceding  
one, it still may cause damage to the rectifying diodes.  
Connection of a varistor in parallel limits this overvoltage to a  
value such that it does not cause any damage to the semi-  
conductors.  
Figure 24  
2 - Protection of a diode rectifier bridge  
Semiconductor components (silicon diodes, thyristors, etc.)  
are especially sensitive to transients and must be protected  
so that the overvoltage value is limited to levels which are not  
dangerous.  
3 - Opening of a resistive circuit supplied with AC  
current with a loadless rectifier  
The diagram is given in Figure 26. When the circuit supplied  
with AC current is opened, an overvoltage appears across  
the rectifier terminals:  
An example of protection for a diode rectifier is schematical-  
ly represented in Figure 25. The varistor is connected to the  
transformer secondary at the input of rectifier bridge.  
- Ldi/dt  
2
The energy stored by the inductance coil (1/2 L I rms) is  
If the transformers magnetizing current is interrupted when  
it reaches its maximum value, a voltage ten times greater  
than the normal value can then appear at the terminals of the  
secondary winding in the absence of a load.  
transferred to the protective varistor wired in parallel to the  
inductance coil.  
L
Figure 26  
9
TP C  
Zinc Oxide Varistors  
Selection Guide  
V
RMS  
Maximum Operating  
RMS Voltage  
(VRMS  
)
11  
14  
18  
14  
18  
22  
75  
100  
120  
150  
200  
240  
250 300  
330 385  
390 470  
420  
560  
680  
625  
825  
V
DC  
Maximum Operating  
Steady State Voltage  
(VDC)  
V
1mA  
Nominal Varistor  
Voltage  
(V  
1mA  
)
1000  
Types  
Voltage range and admissible energy (J ) (1 surge 10 x 1000 µs)  
VE 07  
VF 05  
0.3  
0.8  
0.4  
0.9  
2.0  
4.0  
2
5
11  
VE 09  
VF 07  
6
11  
24  
40  
85  
23  
25  
VE 13  
VF 10  
12  
20  
40  
45  
75  
68  
130  
230  
550  
550  
VE 17  
VF 14  
VE 24  
VF 20  
140  
VN 32  
VB 32  
200  
200  
10  
TP C  
Zinc Oxide Varistors  
Ordering Code  
HOW TO ORDER  
VE09  
M
0
0251  
K
– –  
Series  
M: Varistors  
for general  
applications  
P: Varistors for  
heavy duty  
applications  
Marking  
AC nominal  
voltage  
AC Operating Voltage  
Tolerance  
at 1 mA  
K: ±10%  
Suffixes  
See  
on page 32  
Type  
VE 07  
VE 09  
VE 13  
VE 17  
VE 24  
VF 05  
VF 07  
VF 10  
VF 14  
VF 20  
VN 32  
VB 32  
(EIA coding)  
VE  
VE:0  
(J: ±5% upon request)  
Nominal Voltage  
at 1 mA dc  
(EIA coding)  
VF  
Nominal  
voltage  
at 1 mA dc  
VF:1  
1. Operating voltage expressed by  
2 significant figures:  
1st digit: 0 (zero).  
2. Operating voltage expressed by  
3 significant figures:  
1st, 2nd and 3rd digit:  
the 3 significant figures of  
the operating voltage.  
4th digit: the number of  
ZEROS to be added to  
the operating voltage  
value.  
2nd and 3rd digit:  
the two significant figures  
of the operating voltage.  
4th digit: the number of  
ZEROS to be added to  
the operating voltage  
value.  
Examples: 205 V: 2050  
275 V: 2750  
Examples: 75 V: 0750  
250 V: 0251  
300 V: 0301  
11  
TP C  
Zinc Oxide Varistors  
VE 07/09/13/17/24  
VF 05/07/10/14/20  
FEATURES  
• Radial lead varistors  
t
D
• Wide operating voltage range from 11 V to 625 V (V for  
rms  
VE types) or 18 V to 1000 V (V1mA for VF types)  
Available in tape and reel for use with automatic insertion  
equipment (see pages 31 to 33 for details).  
E
PARTICULAR CHARACTERISTICS  
UL  
VE Series  
VF Series  
P/N codification using  
Maximum  
operating voltage  
Nominal voltage  
at 1 mA dc  
(USA and  
Canadian  
Standards)  
P/N codification using  
(Dmax , V )  
(dceramic, V  
)
V
VDC  
V
V
V
rms  
1mA  
rms  
1mA mini  
1mA nominal  
1mA maxi  
VE07M00110K _ _  
VE09M00110K _ _  
VE07M00140K _ _  
VE09M00140K _ _  
VE13M00140K _ _  
VE17M00140K _ _  
VE07M00170K _ _  
VE09M00170K _ _  
VE13M00170K _ _  
VE17M00170K _ _  
VE07M00200K _ _  
VE09M00200K _ _  
VE13M00200K _ _  
VE17M00200K _ _  
VE07M00250K _ _  
VE09M00250K _ _  
VE13M00250K _ _  
VE17M00250K _ _  
VE07M00300K _ _  
VE09M00300K _ _  
VE13M00300K _ _  
VE17M00300K _ _  
VE07M00350K _ _  
VE09M00350K _ _  
VE13M00350K _ _  
VE17M00350K _ _  
VE07M00400K _ _  
VE09M00400K _ _  
VE13M00400K _ _  
VE17M00400K _ _  
VE07M00500K _ _  
VE09M00500K _ _  
VE13M00500K _ _  
VE17M00500K _ _  
VF05M10180K _ _  
VF07M10180K _ _  
VF05M10220K _ _  
VF07M10220K _ _  
VF10M10220K _ _  
VF14M10220K _ _  
VF05M10270K _ _  
VF07M10270K _ _  
VF10M10270K _ _  
VF14M10270K _ _  
VF05M10330K _ _  
VF07M10330K _ _  
VF10M10330K _ _  
VF14M10330K _ _  
VF05M10390K _ _  
VF07M10390K _ _  
VF10M10390K _ _  
VF14M10390K _ _  
VF05M10470K _ _  
VF07M10470K _ _  
VF10M10470K _ _  
VF14M10470K _ _  
VF05M10560K _ _  
VF07M10560K _ _  
VF10M10560K _ _  
VF14M10560K _ _  
VF05M10680K _ _  
VF07M10680K _ _  
VF10M10680K _ _  
VF14M10680K _ _  
VF05M10820K _ _  
VF07M10820K _ _  
VF10M10820K _ _  
VF14M10820K _ _  
11  
14  
14  
16.0  
19.8  
18  
22  
20.0  
18  
22  
26  
31  
38  
45  
56  
65  
24.2  
30.0  
36.5  
43  
17  
20  
25  
30  
35  
40  
50  
24.0  
29.5  
35  
27  
33  
39  
47  
56  
68  
82  
42  
52  
50  
62  
61  
75  
73  
91  
12  
TP C  
Zinc Oxide Varistors  
VE 07/09/13/17/24  
VF 05/07/10/14/20  
GENERAL CHARACTERISTICS  
DIMENSIONS millimeters (inches)  
D
Storage temperature:  
-40°C to +125°C  
Maximum  
Type Ceramic coated  
diameter diameter  
ø
Max. operating temperature: +85°C  
Type  
H
t
+10%  
E
± 0.8  
Response time:  
< 25 ns  
max. max. –0.05 (.002)  
Voltage coefficient temp.:  
Voltage proof:  
Epoxy coating:  
K
< 0.09%/°C  
VE07 VF05  
VE09 VF07  
5 (.196)  
7 (.275)  
7
9
(.275) 10 (.394)  
(.354) 12 (.472)  
0.6 (.024) 5.08 (0.20)  
0.6 (.024) 5.08 (0.20)  
2500 V  
Flame retardant  
UL94-VO  
VE13* VF10* 10 (.393) 13* (.512) 16 (.630) see 0.8* (.031) 7.62*(0.30)  
VE17 VF14 14 (.551) 17 (.669) 20 (.787)  
VE24** VF20** 20 (.787) 24 (.945) 27 (1.06)  
table  
0.8 (.031) 7.62 (0.30)  
0.8** (.031) 7.62 (0.30)  
MARKING  
Type  
* VE13 / VF10: For models with V 320 V  
RMS  
other version/suffixes available with:  
E = 5.08 (0.20) Suffix:  
Ø = 0.6 (.024) Bulk: HB  
D = 12.5 (.492) max Tape: DA, DB, DC,  
DD, DQ, ...  
AC nominal voltage (EIA coding) for VE types  
1mA varistor voltage (EIA coding) for VF types  
V
Logo  
UL logo (when approved)  
Lot number (VE13/17/24 and VF10/14/20 only)  
**VE24 / VF20: For lead diameter = 1.0 (.039),  
please consult us.  
Max. clamping  
Max. energy absorption  
(10 x 1000 µs)  
W (J )  
Max. permissible  
peak current  
(8 x 20 µs)  
Ip (A)  
Typical  
capacitance  
f = 1kHz  
Mean  
power  
dissipation  
Maximum  
thickness  
t
V/I  
Derating  
curves  
voltage (8 x 20 µs)  
characteristic  
Vp (V)  
Ip (A)  
Number of surges  
1
10  
1 surge  
100  
250  
100  
250  
500  
1000  
100  
250  
500  
1000  
100  
250  
500  
1000  
100  
250  
500  
1000  
100  
250  
500  
1000  
100  
250  
500  
1000  
100  
250  
500  
1000  
400  
1200  
2500  
4500  
2 surges  
pF  
1050  
1900  
1050  
1900  
4000  
4000  
1050  
1900  
4000  
6800  
750  
1500  
3100  
5700  
660  
1250  
2800  
4600  
580  
W
mm (inches)  
3.6 (.142)  
3.6 (.142)  
3.6 (.142)  
3.6 (.142)  
4.3 (.169)  
4.3 (.169)  
3.7 (.146)  
3.7 (.146)  
4.3 (.169)  
4.3 (.169)  
3.9 (.154)  
3.9 (.154)  
4.5 (.177)  
4.5 (.177)  
3.6 (.142)  
3.6 (.142)  
4.4 (.173)  
4.4 (.173)  
3.8 (.150)  
3.8 (.150)  
4.4 (.173)  
4.4 (.173)  
3.9 (.154)  
3.9 (.154)  
4.7 (.185)  
4.7 (.185)  
4.1 (.161)  
4.1 (.161)  
4.9 (.193)  
4.9 (.193)  
3.5 (.138)  
3.5 (.138)  
4.1 (.161)  
4.1 (.161)  
Page  
22  
22  
22  
22  
22  
23  
22  
22  
22  
23  
22  
22  
22  
23  
22  
22  
22  
23  
22  
22  
22  
23  
22  
22  
22  
23  
22  
22  
22  
23  
22  
22  
22  
23  
Page  
24  
25  
24  
25  
26  
27  
24  
25  
26  
27  
24  
25  
26  
27  
24  
25  
26  
27  
24  
25  
26  
27  
24  
25  
26  
27  
24  
25  
26  
27  
24  
25  
26  
27  
36  
36  
43  
43  
43  
43  
53  
53  
53  
53  
65  
65  
65  
65  
77  
77  
77  
77  
93  
93  
93  
93  
1
2.5  
1
2.5  
5
10  
1
2.5  
5
10  
1
2.5  
5
10  
1
2.5  
5
10  
1
2.5  
5
10  
0.3  
0.8  
0.4  
0.9  
2
0.15  
0.5  
0.2  
0.6  
1.3  
2.6  
0.3  
0.7  
1.6  
3.0  
0.3  
0.9  
2.0  
4.0  
0.4  
1.0  
3
5
0.4  
1
4
7
0.4  
1
4.4  
8
0.5  
1
50  
125  
50  
0.01  
0.02  
0.01  
0.02  
0.05  
0.10  
0.01  
0.02  
0.05  
0.10  
0.01  
0.02  
0.05  
0.10  
0.01  
0.02  
0.05  
0.10  
0.01  
0.02  
0.05  
0.10  
0.01  
0.02  
0.05  
0.10  
0.01  
0.02  
0.05  
0.10  
0.1  
125  
250  
500  
50  
125  
250  
500  
50  
125  
250  
500  
50  
125  
250  
500  
50  
125  
250  
500  
50  
125  
250  
500  
50  
125  
250  
500  
200  
600  
1250  
2500  
4
0.5  
1.1  
2.5  
4.7  
0.6  
1.3  
3.1  
5.7  
0.7  
1.6  
3.7  
7
0.9  
2.0  
4.4  
9.0  
1.1  
2.5  
5.4  
10.0  
1.3  
3.0  
8.4  
13.0  
1.8  
4.2  
8.4  
15.0  
1050  
2150  
3500  
460  
110  
1
110  
110  
110  
135  
135  
135  
135  
135  
135  
135  
135  
2.5  
5
10  
1
2.5  
5
850  
1900  
3100  
400  
720  
5.9  
8.5  
0.6  
1.6  
6
1700  
2800  
300  
530  
950  
10  
5
10  
25  
50  
0.2  
0.4  
0.6  
11  
1800  
13  
TP C  
Zinc Oxide Varistors  
VE 07/09/13/17/24  
VF 05/07/10/14/20  
VE Series  
VF Series  
Maximum  
Nominal voltage  
at 1 mA dc  
UL  
P/N codification using  
P/N codification using  
operating voltage  
(USA and  
Canadian  
Standards)  
(Dmax , V )  
(dceramic, V  
)
V
VDC  
V
V
V
rms  
1mA  
rms  
1mA mini  
1mA nominal  
1mA maxi  
VE07M00600K _ _  
VE09M00600K _ _  
VE13M00600K _ _  
VE17M00600K _ _  
VE07M00750K _ _  
VE09M00750K _ _  
VE13M00750K _ _  
VE17M00750K _ _  
VE24M00750K _ _  
VE07M00950K _ _  
VE09M00950K _ _  
VE13M00950K _ _  
VE17M00950K _ _  
VE24M00950K _ _  
VE07M01150K _ _  
VE09M01150K _ _  
VE13M01150K _ _  
VE17M01150K _ _  
VE24M01150K _ _  
VE07M00131K _ _  
VE09M00131K _ _  
VE13M00131K _ _  
VE17M00131K _ _  
VE24M00131K _ _  
VE07M00141K _ _  
VE09M00141K _ _  
VE13M00141K _ _  
VE17M00141K _ _  
VE24M00141K _ _  
VE07M00151K _ _  
VE09M00151K _ _  
VE13M00151K _ _  
VE17M00151K _ _  
VE24M00151K _ _  
VE07M01750K _ _  
VE09M01750K _ _  
VE13M01750K _ _  
VE17M01750K _ _  
VE24M01750K _ _  
VE07M00211K _ _  
VE09M00211K _ _  
VE13M00211K _ _  
VE17M00211K _ _  
VE24M00211K _ _  
VE07M00231K _ _  
VE09M00231K _ _  
VE13M00231K _ _  
VE17M00231K _ _  
VE24M00231K _ _  
VF05M10101K _ _  
VF07M10101K _ _  
VF10M10101K _ _  
VF14M10101K _ _  
VF05M10121K _ _  
VF07M10121K _ _  
VF10M10121K _ _  
VF14M10121K _ _  
VF20M10121K _ _  
VF05M10151K _ _  
VF07M10151K _ _  
VF10M10151K _ _  
VF14M10151K _ _  
VF20M10151K _ _  
VF05M10181K _ _  
VF07M10181K _ _  
VF10M10181K _ _  
VF14M10181K _ _  
VF20M10181K _ _  
VF05M12050K _ _  
VF07M12050K _ _  
VF10M12050K _ _  
VF14M12050K _ _  
VF20M12050K _ _  
VF05M10221K _ _  
VF07M10221K _ _  
VF10M10221K _ _  
VF14M10221K _ _  
VF20M10221K _ _  
VF05M10241K _ _  
VF07M10241K _ _  
VF10M10241K _ _  
VF14M10241K _ _  
VF20M10241K _ _  
VF05M10271K _ _  
VF07M10271K _ _  
VF10M10271K _ _  
VF14M10271K _ _  
VF20M10271K _ _  
VF05M10331K _ _  
VF07M10331K _ _  
VF10M10331K _ _  
VF14M10331K _ _  
VF20M10331K _ _  
VF05M10361K _ _  
VF07M10361K _ _  
VF10M10361K _ _  
VF14M10361K _ _  
VF20M10361K _ _  
60  
75  
80  
90  
100  
120  
110  
100  
125  
150  
170  
180  
200  
225  
275  
300  
108  
132  
165  
198  
226  
242  
264  
297  
363  
396  
95  
135  
162  
184  
198  
216  
243  
297  
324  
150  
180  
205  
220  
240  
270  
330  
360  
115  
130  
140  
150  
175  
210  
230  
14  
TP C  
Zinc Oxide Varistors  
VE 07/09/13/17/24  
VF 05/07/10/14/20  
Max. clamping  
voltage (8 x 20 µs)  
Max. energy absorption  
Max. permissible  
peak current  
(8 x 20 µs)  
Ip (A)  
Typical  
capacitance  
f = 1kHz  
Mean  
power  
dissipation  
Maximum  
thickness  
t
V/I  
Derating  
curves  
(10 x 1000 µs)  
W (J )  
characteristic  
Vp (V) Ip (A)  
Number of surges  
1
10  
1 surge  
2 surges  
pF  
W
mm (inches)  
Page  
Page  
165  
165  
165  
165  
200  
200  
200  
200  
200  
250  
250  
250  
250  
250  
300  
300  
300  
300  
300  
340  
340  
340  
340  
340  
360  
360  
360  
360  
360  
400  
400  
400  
400  
400  
445  
445  
445  
445  
445  
545  
545  
545  
545  
545  
595  
595  
595  
595  
595  
5
10  
25  
50  
5
10  
25  
50  
100  
5
10  
25  
50  
100  
5
10  
25  
50  
100  
5
10  
25  
50  
100  
5
10  
25  
50  
100  
5
10  
25  
50  
100  
5
10  
25  
50  
100  
5
2.2  
4.8  
0.7  
1.7  
7
400  
1200  
2500  
4500  
400  
1200  
2500  
4500  
6500  
400  
1200  
2500  
4500  
6500  
400  
1200  
2500  
4500  
6500  
400  
1200  
2500  
4500  
6500  
400  
1200  
2500  
4500  
6500  
400  
1200  
2500  
4500  
6500  
400  
1200  
2500  
4500  
6500  
400  
200  
600  
1250  
2500  
200  
165  
440  
870  
2200  
150  
400  
700  
1900  
4200  
110  
310  
560  
1200  
3400  
100  
280  
500  
1100  
3000  
90  
250  
450  
1000  
2500  
85  
235  
425  
930  
2250  
80  
220  
400  
850  
2000  
70  
190  
340  
750  
2000  
60  
155  
275  
600  
1650  
55  
140  
250  
550  
1500  
0.1  
0.2  
0.4  
0.6  
0.1  
0.2  
0.4  
0.6  
0.8  
0.1  
0.2  
0.4  
0.6  
0.8  
0.1  
0.2  
0.4  
0.6  
0.8  
0.1  
0.2  
0.4  
0.6  
0.8  
0.1  
0.2  
0.4  
0.6  
0.8  
0.1  
0.2  
0.4  
0.6  
0.8  
0.1  
0.2  
0.4  
0.6  
0.8  
0.1  
0.2  
0.4  
0.6  
0.8  
0.1  
0.2  
0.4  
0.6  
0.8  
3.8 (.150)  
3.8 (.150)  
4.5 (.177)  
4.5 (.177)  
4.0 (.157)  
4.0 (.157)  
4.4 (.173)  
4.4 (.173)  
4.8 (.189)  
4.4 (.173)  
4.4 (.173)  
5.0 (.197)  
5.0 (.197)  
5.4 (.213)  
4.5 (.177)  
4.5 (.177)  
5.1 (.201)  
5.1 (.201)  
5.5 (.217)  
4.1 (.161)  
4.1 (.161)  
4.7 (.185)  
4.7 (.185)  
5.1 (.201)  
4.2 (.165)  
4.2 (.165)  
4.8 (.189)  
4.8 (.189)  
5.2 (.205)  
4.3 (.169)  
4.3 (.169)  
4.9 (.193)  
4.9 (.193)  
5.3 (.209)  
4.5 (.177)  
4.5 (.177)  
5.1 (.201)  
5.1 (.201)  
5.5 (.217)  
4.9 (.193)  
4.9 (.193)  
5.5 (.217)  
5.5 (.217)  
5.9 (.232)  
5.1 (.201)  
5.1 (.201)  
5.7 (.224)  
5.7 (.224)  
6.1 (.240)  
22  
22  
22  
23  
22  
22  
22  
23  
23  
22  
22  
22  
23  
23  
22  
22  
22  
23  
23  
22  
22  
22  
23  
23  
22  
22  
22  
23  
23  
22  
22  
22  
23  
23  
22  
22  
22  
23  
23  
22  
22  
22  
23  
23  
22  
22  
22  
23  
23  
24  
25  
26  
27  
24  
25  
26  
27  
28  
24  
25  
26  
27  
28  
24  
25  
26  
27  
28  
24  
25  
26  
27  
28  
24  
25  
26  
27  
28  
24  
25  
26  
27  
28  
24  
25  
26  
27  
28  
24  
25  
26  
27  
28  
24  
25  
26  
27  
28  
10  
17  
2.5  
5.9  
12  
20  
40  
3.4  
7.6  
15  
25  
50  
3.6  
8.4  
18  
30  
60  
4.2  
9.5  
19  
14  
0.8  
1.8  
8
15  
30  
1
3
9
20  
33  
1.3  
3.3  
10.6  
22  
40  
1.5  
4
11  
25  
46  
1.5  
4
12.5  
26.5  
50  
1.8  
4.1  
13  
30  
56  
1.9  
4.5  
13.5  
31  
600  
1250  
2500  
4000  
200  
600  
1250  
2500  
4000  
200  
600  
1250  
2500  
4000  
200  
600  
1250  
2500  
4000  
200  
34  
74  
4.5  
10  
22  
36  
78  
600  
1250  
2500  
4000  
200  
4.9  
11  
24  
40  
85  
600  
1250  
2500  
4000  
200  
5.6  
13  
28  
46  
98  
7.2  
15  
31  
54  
115  
7.2  
17  
36  
600  
1250  
2500  
4000  
200  
56  
2.2  
5.4  
14.0  
35  
70  
2.4  
6
14.3  
38  
75  
10  
25  
50  
100  
5
10  
25  
50  
100  
1200  
2500  
4500  
6500  
400  
1200  
2500  
4500  
6500  
600  
1250  
2500  
4000  
200  
600  
1250  
2500  
4000  
60  
130  
15  
TP C  
Zinc Oxide Varistors  
VE 07/09/13/17/24  
VF 05/07/10/14/20  
VE Series  
VF Series  
Maximum  
Nominal voltage  
at 1 mA dc  
UL  
P/N codification using  
P/N codification using  
operating voltage  
(USA and  
Canadian  
Standards)  
(Dmax , V )  
(dceramic, V  
)
V
VDC  
V
V
V
rms  
1mA  
rms  
1mA mini  
1mA nominal  
1mA maxi  
VE07M00251K _ _  
VE09M00251K _ _  
VE13M00251K _ _  
VE17M00251K _ _  
VE24M00251K _ _  
VE07M02750K _ _  
VE09M02750K _ _  
VE13M02750K _ _  
VE17M02750K _ _  
VE24M02750K _ _  
VE07M00301K _ _  
VE09M00301K _ _  
VE13M00301K _ _  
VE17M00301K _ _  
VE24M00301K _ _  
VE09M00321K _ _  
VE13M00321K _ _  
VE17M00321K _ _  
VE24M00321K _ _  
VE09M00351K _ _  
VE13M00351K _ _  
VE17M00351K _ _  
VE24M00351K _ _  
VE09M03850K _ _  
VE13M03850K _ _  
VE17M03850K _ _  
VE24M03850K _ _  
VE09M00421K _ _  
VE13M00421K _ _  
VE17M00421K _ _  
VE24M00421K _ _  
VE13M00441K _ _  
VE17M00441K _ _  
VE24M00441K _ _  
VE13M00461K _ _  
VE17M00461K _ _  
VE24M00461K _ _  
VE13M00511K _ _  
VE17M00511K _ _  
VE24M00511K _ _  
VE13M00551K _ _  
VE17M00551K _ _  
VE24M00551K _ _  
VE13M05750K _ _  
VE17M05750K _ _  
VE24M05750K _ _  
VE13M06250K _ _  
VE17M06250K _ _  
VE24M06250K _ _  
VF05M10391K _ _  
VF07M10391K _ _  
VF10M10391K _ _  
VF14M10391K _ _  
VF20M10391K _ _  
VF05M10431K _ _  
VF07M10431K _ _  
VF10M10431K _ _  
VF14M10431K _ _  
VF20M10431K _ _  
VF05M10471K _ _  
VF07M10471K _ _  
VF10M10471K _ _  
VF14M10471K _ _  
VF20M10471K _ _  
VF07M10511K _ _  
VF10M10511K _ _  
VF14M10511K _ _  
VF20M10511K _ _  
VF07M10561K _ _  
VF10M10561K _ _  
VF14M10561K _ _  
VF20M10561K _ _  
VF07M10621K _ _  
VF10M10621K _ _  
VF14M10621K _ _  
VF20M10621K _ _  
VF07M10681K _ _  
VF10M10681K _ _  
VF14M10681K _ _  
VF20M10681K _ _  
VF10M17150K _ _  
VF14M17150K _ _  
VF20M17150K _ _  
VF10M10751K _ _  
VF14M10751K _ _  
VF20M10751K _ _  
VF10M10821K _ _  
VF14M10821K _ _  
VF20M10821K _ _  
VF10M10861K _ _  
VF14M10861K _ _  
VF20M10861K _ _  
VF10M10911K _ _  
VF14M10911K _ _  
VF20M10911K _ _  
VF10M10102K _ _  
VF14M10102K _ _  
VF20M10102K _ _  
250  
275  
300  
320  
351  
387  
423  
390  
430  
470  
429  
350  
385  
473  
517  
320  
350  
385  
420  
420  
460  
505  
560  
459  
504  
558  
612  
510  
560  
620  
680  
561  
616  
682  
748  
440  
460  
510  
550  
575  
625  
585  
615  
670  
715  
730  
825  
643  
675  
738  
774  
819  
900  
715  
750  
820  
860  
910  
1000  
787  
825  
902  
946  
1001  
1100  
16  
TP C  
Zinc Oxide Varistors  
VE 07/09/13/17/24  
VF 05/07/10/14/20  
Max. clamping  
voltage (8 x 20 µs)  
Max. energy absorption  
Max. permissible  
peak current  
(8 x 20 µs)  
Ip (A)  
Typical  
capacitance  
f = 1kHz  
Mean  
power  
dissipation  
Maximum  
thickness  
t
V/I  
Derating  
curves  
(10 x 1000 µs)  
W (J )  
Number of surges  
characteristic  
Vp (V)  
Ip (A)  
1
10  
2.8  
7.3  
1 surge  
2 surges  
pF  
50  
W
0.1  
0.2  
0.4  
0.6  
0.8  
0.1  
0.2  
0.4  
0.6  
0.8  
0.1  
0.2  
0.4  
0.6  
0.8  
0.2  
0.4  
0.6  
0.8  
0.2  
0.4  
0.6  
0.8  
0.2  
0.4  
0.6  
0.8  
0.2  
0.4  
0.6  
0.8  
0.4  
0.6  
0.8  
0.4  
0.6  
0.8  
0.4  
0.6  
0.8  
0.4  
0.6  
0.8  
0.4  
0.6  
0.8  
0.4  
0.6  
0.8  
mm (inches)  
5.4 (.213)  
5.4 (.213)  
5.9 (.232)  
5.9 (.232)  
6.3 (.248)  
5.7 (.224)  
5.7 (.224)  
6.3 (.248)  
6.3 (.248)  
6.7 (.264)  
6.0 (.236)  
6.0 (.236)  
6.6 (.260)  
6.6 (.260)  
7.0 (.276)  
6.4 (.252)  
7.0 (.276)  
7.0 (.276)  
7.5 (.276)  
6.6 (.260)  
7.3 (.287)  
7.3 (.287)  
7.8 (.307)  
7.0 (.276)  
7.7 (.303)  
7.7 (.303)  
8.1 (.319)  
7.4 (.291)  
8.2 (.323)  
8.2 (.323)  
8.6 (.339)  
8.4 (.331)  
8.4 (.331)  
8.8 (.346)  
8.5 (.335)  
8.5 (.335)  
9.0 (.354)  
9.0 (.354)  
9.0 (.354)  
9.4 (.370)  
9.3 (.366)  
9.3 (.366)  
9.7 (.382)  
9.7 (.382)  
9.7 (.382)  
10.1 (.398)  
10.5 (.413)  
10.5 (.413)  
11.0 (.433)  
Page  
22  
22  
22  
23  
23  
22  
22  
22  
23  
23  
22  
22  
22  
23  
23  
22  
22  
23  
23  
22  
22  
23  
23  
22  
22  
23  
23  
22  
22  
23  
23  
22  
23  
23  
22  
23  
23  
22  
23  
23  
22  
23  
23  
22  
23  
23  
22  
23  
23  
Page  
24  
25  
26  
27  
28  
24  
25  
26  
27  
28  
24  
25  
26  
27  
28  
25  
26  
27  
28  
25  
26  
27  
28  
25  
26  
27  
28  
25  
26  
27  
28  
26  
27  
28  
26  
27  
28  
26  
27  
28  
26  
27  
28  
26  
27  
28  
26  
27  
28  
645  
645  
645  
5
10  
25  
50  
8.2  
19  
38  
65  
140  
8.6  
21  
43  
71  
151  
9
25  
45  
80  
150  
25  
45  
82  
150  
25  
45  
85  
155  
25  
45  
88  
155  
25  
45  
90  
160  
45  
95  
165  
45  
100  
175  
55  
110  
190  
57  
113  
200  
60  
120  
210  
68  
400  
200  
600  
1250  
2500  
4000  
200  
1200  
2500  
4500  
6500  
400  
1200  
2500  
4500  
6500  
400  
130  
230  
500  
1300  
45  
120  
210  
450  
1200  
40  
100  
180  
400  
1000  
100  
170  
380  
950  
95  
160  
365  
900  
95  
19  
645  
39  
100  
3
7.4  
20  
40  
645  
100  
710  
710  
5
10  
600  
710  
25  
1250  
2500  
4000  
200  
710  
50  
710  
775  
100  
5
105  
3.3  
7.5  
20  
42  
107  
7.5  
20  
42  
775  
10  
1200  
2500  
4500  
6500  
1200  
2500  
4500  
6500  
1200  
2500  
4500  
6500  
1200  
2500  
4500  
6500  
1200  
2500  
4500  
6500  
2500  
4500  
6500  
2500  
4500  
6500  
2500  
4500  
6500  
2500  
4500  
6500  
2500  
4500  
6500  
2500  
4500  
6500  
600  
775  
25  
1250  
2500  
4000  
600  
1250  
2500  
4000  
600  
1250  
2500  
4000  
600  
1250  
2500  
4000  
600  
1250  
2500  
4000  
1250  
2500  
4000  
1250  
2500  
4000  
1250  
2500  
4000  
1250  
2500  
4000  
1250  
2500  
4000  
1250  
2500  
4000  
775  
50  
775  
840  
100  
10  
840  
25  
840  
50  
840  
910  
100  
10  
107  
7.5  
20  
42  
910  
25  
910  
50  
910  
100  
10  
107  
1025  
1025  
1025  
1025  
1120  
1120  
1120  
1120  
1180  
1180  
1180  
1240  
1240  
1240  
1350  
1350  
1350  
1420  
1420  
1420  
1500  
1500  
1500  
1650  
1650  
1650  
7.5  
20  
42  
25  
50  
100  
10  
25  
50  
100  
25  
50  
100  
25  
50  
100  
25  
50  
100  
25  
50  
100  
25  
50  
100  
25  
150  
350  
850  
80  
107  
7.5  
20  
42  
107  
20  
44  
115  
20  
47  
120  
22  
57  
150  
24  
57  
150  
25  
60  
160  
25  
60  
120  
300  
700  
115  
275  
650  
110  
250  
600  
100  
220  
550  
90  
200  
500  
80  
180  
450  
74  
50  
100  
130  
230  
165  
410  
160  
17  
TP C  
Zinc Oxide Varistors  
VE/VF Types for Heavy Duty Applications (“P Series)  
FEATURES  
• “P Series” are especially dedicated to heavy duty applica-  
t
D
tions encountered in the AC power network. Higher surge  
current and energy ratings provide an improved protection  
and a better reliability  
• Radial lead varistors  
• Operating voltage range from 130 V to 625 V (V for  
rms  
VE types) or 205 V to 1000 V (V1mA for VF types)  
Available in tape and reel for use with automatic insertion  
equipment (see pages 31 to 33 for details).  
E
PARTICULAR CHARACTERISTICS  
UL  
VE Series  
VF Series  
Maximum  
Nominal voltage  
at 1 mA dc  
(USA and  
Canadian  
Standards)  
P/N codification using  
P/N codification using  
operating voltage  
(Dmax , V )  
(dceramic, V  
)
V
VDC  
V
V
V
rms  
1mA  
rms  
1mA mini  
1mA nominal  
1mA maxi  
VE07P00131K _ _  
VE09P00131K _ _  
VE13P00131K _ _  
VE17P00131K _ _  
VE24P00131K _ _  
VE07P00141K _ _  
VE09P00141K _ _  
VE13P00141K _ _  
VE17P00141K _ _  
VE24P00141K _ _  
VE07P00151K _ _  
VE09P00151K _ _  
VE13P00151K _ _  
VE17P00151K _ _  
VE24P00151K _ _  
VE07P01750K _ _  
VE09P01750K _ _  
VE13P01750K _ _  
VE17P01750K _ _  
VE24P01750K _ _  
VE07P00211K _ _  
VE09P00211K _ _  
VE13P00211K _ _  
VE17P00211K _ _  
VE24P00211K _ _  
VE07P00231K _ _  
VE09P00231K _ _  
VE13P00231K _ _  
VE17P00231K _ _  
VE24P00231K _ _  
VF05P12050K _ _  
VF07P12050K _ _  
VF10P12050K _ _  
VF14P12050K _ _  
VF20P12050K _ _  
VF05P10221K _ _  
VF07P10221K _ _  
VF10P10221K _ _  
VF14P10221K _ _  
VF20P10221K _ _  
VF05P10241K _ _  
VF07P10241K _ _  
VF10P10241K _ _  
VF14P10241K _ _  
VF20P10241K _ _  
VF05P10271K _ _  
VF07P10271K _ _  
VF10P10271K _ _  
VF14P10271K _ _  
VF20P10271K _ _  
VF05P10331K _ _  
VF07P10331K _ _  
VF10P10331K _ _  
VF14P10331K _ _  
VF20P10331K _ _  
VF05P10361K _ _  
VF07P10361K _ _  
VF10P10361K _ _  
VF14P10361K _ _  
VF20P10361K _ _  
130  
170  
184  
205  
226  
140  
180  
198  
220  
242  
150  
175  
200  
225  
216  
243  
240  
270  
264  
297  
210  
230  
275  
300  
297  
324  
330  
360  
363  
396  
18  
TP C  
Zinc Oxide Varistors  
VE/VF Types for Heavy Duty Applications (“P Series)  
GENERAL CHARACTERISTICS  
DIMENSIONS millimeters (inches)  
D
Storage temperature:  
-40°C to +125°C  
Maximum  
Type Ceramic coated  
diameter diameter  
ø
Max. operating temperature: +85°C  
Type  
H
t
+10%  
E
± 0.8  
Response time:  
< 25 ns  
max. max. –0.05 (.002)  
Voltage coefficient temp.:  
Voltage proof:  
Epoxy coating:  
K
< 0.09%/°C  
VE07 VF05  
VE09 VF07  
5 (.196)  
7 (.275)  
7
9
(.275) 10 (.394)  
(.354) 12 (.472)  
0.6 (.024) 5.08 (0.20)  
0.6 (.024) 5.08 (0.20)  
2500 V  
Flame retardant  
UL94-VO  
VE13* VF10* 10 (.393) 13* (.512) 16 (.630) see 0.8* (.031) 7.62*(0.30)  
VE17 VF14 14 (.551) 17 (.669) 20 (.787)  
VE24** VF20** 20 (.787) 24 (.945) 27 (1.06)  
table  
0.8 (.031) 7.62 (0.30)  
0.8** (.031) 7.62 (0.30)  
MARKING  
Type  
* VE13 / VF10: For models with V 320 V  
RMS  
other version/suffixes available with:  
E = 5.08 (0.20) Suffix:  
Ø = 0.6 (.024) Bulk: HB  
D = 12.5 (.492) max Tape: DA, DB, DC,  
DD, DQ, ...  
AC nominal voltage (EIA coding) for VE types  
1mA varistor voltage (EIA coding) for VF types  
V
Logo  
UL logo (when approved)  
Lot number (VE13/17/24 and VF10/14/20 only)  
**VE24 / VF20: For lead diameter = 1.0 (.039),  
please consult us.  
Max. clamping  
Max. energy absorption  
(10 x 1000 µs)  
W (J )  
Number of surges  
1 surge  
Max. permissible  
peak current  
(8 x 20 µs)  
Ip (A)  
Typical  
capacitance  
f = 1kHz  
Mean  
power  
Maximum  
thickness  
t
V/I  
Derating  
curves  
voltage (8 x 20 µs)  
characteristic  
dissipation  
Vp (V)  
Ip (A)  
1 surge  
2 surges  
pF  
W
mm (inches)  
Page  
Page  
340  
5
8.5  
17.5  
35  
800  
1750  
3500  
6000  
10000  
800  
600  
1250  
2500  
4500  
7000  
600  
90  
250  
450  
1000  
2500  
85  
0.1  
0.2  
0.4  
0.6  
0.8  
0.1  
0.2  
0.4  
0.6  
0.8  
0.1  
0.2  
0.4  
0.6  
0.8  
0.1  
0.2  
0.4  
0.6  
0.8  
0.1  
0.2  
0.4  
0.6  
0.8  
0.1  
0.2  
0.4  
0.6  
0.8  
4.1 (.161)  
4.1 (.161)  
4.7 (.185)  
4.7 (.185)  
5.1 (.201)  
4.2 (.165)  
4.2 (.165)  
4.8 (.189)  
4.8 (.189)  
5.2 (.205)  
4.3 (.169)  
4.3 (.169)  
4.9 (.193)  
4.9 (.193)  
5.3 (.209)  
4.5 (.177)  
4.5 (.177)  
5.1 (.201)  
5.1 (.201)  
5.5 (.217)  
4.9 (.193)  
4.9 (.193)  
5.5 (.217)  
5.5 (.217)  
5.9 (.232)  
5.1 (.201)  
5.1 (.201)  
5.7 (.224)  
5.7 (.224)  
6.1 (.240)  
34  
34  
34  
35  
35  
34  
34  
34  
35  
35  
34  
34  
34  
35  
35  
34  
34  
34  
35  
35  
34  
34  
34  
35  
35  
34  
34  
34  
35  
35  
24  
25  
26  
27  
28  
24  
25  
26  
27  
28  
24  
25  
26  
27  
28  
24  
25  
26  
27  
28  
24  
25  
26  
27  
28  
24  
25  
26  
27  
28  
340  
340  
340  
340  
360  
360  
360  
360  
360  
400  
400  
400  
400  
400  
445  
445  
445  
445  
445  
545  
545  
545  
545  
545  
595  
595  
595  
595  
595  
10  
25  
50  
100  
5
70  
140  
9
10  
25  
50  
100  
5
19  
1750  
3500  
6000  
10000  
800  
1250  
2500  
4500`  
7000  
600  
235  
425  
930  
2250  
80  
39  
78  
155  
10.5  
21  
10  
25  
50  
100  
5
1750  
3500  
6000  
10000  
800  
1250  
2500  
4500  
7000  
600  
220  
400  
850  
2000  
70  
42  
85  
170  
11  
10  
25  
50  
100  
5
24  
1750  
3500  
6000  
10000  
800  
1250  
2500  
4500  
7000  
600  
190  
340  
750  
2000  
60  
50  
100  
190  
13  
10  
25  
50  
100  
5
28  
1750  
3500  
6000  
10000  
800  
1250  
2500  
4500  
7000  
600  
155  
275  
600  
1650  
55  
60  
115  
230  
16  
10  
25  
50  
100  
32  
1750  
3500  
6000  
10000  
1250  
2500  
4500  
7000  
140  
250  
550  
1500  
65  
130  
250  
19  
TP C  
Zinc Oxide Varistors  
VE/VF Types for Heavy Duty Applications (“P Series)  
UL  
VE Series  
P/N codification using  
VF Series  
Maximum  
Nominal voltage  
at 1 mA dc  
(USA and  
Canadian  
Standards)  
P/N codification using operating voltage  
(Dmax , V )  
(dceramic, V  
)
V
VDC  
V
V
V
rms  
1mA  
rms  
1mA mini  
1mA nominal  
1mA maxi  
VE07P00251K _ _  
VE09P00251K _ _  
VE13P00251K _ _  
VE17P00251K _ _  
VE24P00251K _ _  
VF05P10391K _ _  
VF07P10391K _ _  
VF10P10391K _ _  
VF14P10391K _ _  
VF20P10391K _ _  
250  
275  
300  
320  
351  
387  
423  
390  
430  
470  
429  
VE07P02750K _ _  
VE09P02750K _ _  
VE13P02750K _ _  
VE17P02750K _ _  
VE24P02750K _ _  
VF05P10431K _ _  
VF07P10431K _ _  
VF10P10431K _ _  
VF14P10431K _ _  
VF20P10431K _ _  
350  
385  
473  
517  
VE07P00301K _ _  
VE09P00301K _ _  
VE13P00301K _ _  
VE17P00301K _ _  
VE24P00301K _ _  
VF05P10471K _ _  
VF07P10471K _ _  
VF10P10471K _ _  
VF14P10471K _ _  
VF20P10471K _ _  
VE09P00321K _ _  
VE13P00321K _ _  
VE17P00321K _ _  
VE24P00321K _ _  
VF07P10511K _ _  
VF10P10511K _ _  
VF14P10511K _ _  
VF20P10511K _ _  
320  
350  
385  
420  
420  
460  
505  
560  
459  
504  
558  
612  
510  
560  
620  
680  
561  
616  
682  
748  
VE09P00351K _ _  
VE13P00351K _ _  
VE17P00351K _ _  
VE24P00351K _ _  
VF07P10561K _ _  
VF10P10561K _ _  
VF14P10561K _ _  
VF20P10561K _ _  
VE09P03850K _ _  
VE13P03850K _ _  
VE17P03850K _ _  
VE24P03850K _ _  
VF07P10621K _ _  
VF10P10621K _ _  
VF14P10621K _ _  
VF20P10621K _ _  
VE09P00421K _ _  
VE13P00421K _ _  
VE17P00421K _ _  
VE24P00421K _ _  
VF07P10681K _ _  
VF10P10681K _ _  
VF14P10681K _ _  
VF20P10681K _ _  
VE13P00441K _ _  
VE17P00441K _ _  
VE24P00441K _ _  
VF10P17150K _ _  
VF14P17150K _ _  
VF20P17150K _ _  
440  
460  
510  
550  
575  
625  
585  
615  
670  
715  
730  
825  
643  
675  
738  
774  
819  
900  
715  
750  
820  
860  
910  
1000  
787  
825  
VE13P00461K _ _  
VE17P00461K _ _  
VE24P00461K _ _  
VF10P10751K _ _  
VF14P10751K _ _  
VF20P10751K _ _  
VE13P00511K _ _  
VE17P00511K _ _  
VE24P00511K _ _  
VF10P10821K _ _  
VF14P10821K _ _  
VF20P10821K _ _  
902  
VE13P00551K _ _  
VE17P00551K _ _  
VE24P00551K _ _  
VF10P10861K _ _  
VF14P10861K _ _  
VF20P10861K _ _  
946  
VE13P05750K _ _  
VE17P05750K _ _  
VE24P05750K _ _  
VF10P10911K _ _  
VF14P10911K _ _  
VF20P10911K _ _  
1001  
1100  
VE13P06250K _ _  
VE17P06250K _ _  
VE24P06250K _ _  
VF10P10102K _ _  
VF14P10102K _ _  
VF20P10102K _ _  
20  
TP C  
Zinc Oxide Varistors  
VE/VF Types for Heavy Duty Applications (“P Series)  
Max. clamping  
Max. energy absorption  
(10 x 1000 µs)  
W (J )  
Number of surges  
1 surge  
Max. permissible  
peak current  
(8 x 20 µs)  
Ip (A)  
Typical  
capacitance  
f = 1kHz  
Mean  
power  
Maximum  
thickness  
t
V/I  
Derating  
curves  
voltage (8 x 20 µs)  
characteristic  
dissipation  
Vp (V)  
Ip (A)  
1 surge  
2 surges  
pF  
W
mm (inches)  
Page  
Page  
645  
5
10  
25  
50  
100  
17  
35  
70  
140  
280  
800  
1750  
3500  
6000  
10000  
600  
1250  
2500  
4500  
7000  
50  
130  
230  
500  
1300  
0.1  
0.2  
0.4  
0.6  
0.8  
5.4 (.213)  
5.4 (.213)  
5.9 (.232)  
5.9 (.232)  
6.3 (.248)  
34  
34  
34  
35  
35  
24  
25  
26  
27  
28  
645  
645  
645  
645  
710  
710  
710  
710  
710  
5
10  
25  
50  
100  
20  
40  
80  
160  
310  
800  
1750  
3500  
6000  
10000  
600  
1250  
2500  
4500  
7000  
45  
120  
210  
450  
1200  
0.1  
0.2  
0.4  
0.6  
0.8  
5.7 (.224)  
5.7 (.224)  
6.3 (.248)  
6.3 (.248)  
6.7 (.264)  
34  
34  
34  
35  
35  
24  
25  
26  
27  
28  
775  
775  
775  
775  
775  
5
10  
25  
50  
100  
21  
42  
85  
170  
340  
800  
1750  
3500  
6000  
10000  
600  
1250  
2500  
4500  
7000  
40  
100  
180  
400  
1000  
0.1  
0.2  
0.4  
0.6  
0.8  
6.0 (.236)  
6.0 (.236)  
6.6 (.260)  
6.6 (.260)  
7.0 (.276)  
34  
34  
34  
35  
35  
24  
25  
26  
27  
28  
840  
840  
840  
840  
10  
25  
50  
45  
90  
180  
360  
1750  
3500  
5000  
8000  
1250  
2500  
4000  
6000  
100  
170  
380  
950  
0.2  
0.4  
0.6  
0.8  
6.4 (.252)  
7.0 (.276)  
7.0 (.276)  
7.5 (.295)  
34  
34  
35  
35  
25  
26  
27  
28  
100  
910  
910  
910  
910  
10  
25  
50  
47  
95  
190  
380  
1750  
3500  
5000  
8000  
1250  
2500  
4000  
6000  
95  
160  
365  
900  
0.2  
0.4  
0.6  
0.8  
6.6 (.260)  
7.3 (.287)  
7.3 (.287)  
7.8 (.307)  
34  
34  
35  
35  
25  
26  
27  
28  
100  
1025  
1025  
1025  
1025  
10  
25  
50  
50  
100  
200  
400  
1750  
3500  
5000  
8000  
1250  
2500  
4000  
6000  
95  
150  
350  
850  
0.2  
0.4  
0.6  
0.8  
7.0 (.276)  
7.7 (.303)  
7.7 (.303)  
8.1 (.319)  
34  
34  
35  
35  
25  
26  
27  
28  
100  
1120  
1120  
1120  
1120  
10  
25  
50  
52  
105  
210  
420  
1750  
3500  
5000  
8000  
1250  
2500  
4000  
6000  
80  
120  
300  
700  
0.2  
0.4  
0.6  
0.8  
7.4 (.291)  
8.2 (.323)  
8.2 (.323)  
8.6 (.339)  
34  
34  
35  
35  
25  
26  
27  
28  
100  
1180  
1180  
1180  
25  
50  
100  
105  
210  
420  
3500  
5000  
8000  
2500  
4000  
6000  
115  
275  
650  
0.4  
0.6  
0.8  
8.4 (.331)  
8.4 (.331)  
8.8 (.346)  
34  
35  
35  
26  
27  
28  
1240  
1240  
1240  
25  
50  
100  
105  
210  
420  
3500  
5000  
8000  
2500  
4000  
6000  
110  
250  
600  
0.4  
0.6  
0.8  
8.5 (.335)  
8.5 (.335)  
9.0 (.354)  
34  
35  
35  
26  
27  
28  
1350  
1350  
1350  
25  
50  
100  
110  
225  
450  
3500  
5000  
7500  
2500  
4000  
6000  
100  
220  
550  
0.4  
0.6  
0.8  
9.0 (.354)  
9.0 (.354)  
9.4 (.370)  
34  
35  
35  
26  
27  
28  
1420  
1420  
1420  
25  
50  
100  
120  
240  
480  
3500  
5000  
7500  
2500  
4000  
6000  
90  
200  
500  
0.4  
0.6  
0.8  
9.3 (.366)  
9.3 (.366)  
9.7 (.382)  
34  
35  
35  
26  
27  
28  
1500  
1500  
1500  
25  
50  
100  
125  
250  
500  
3500  
5000  
7500  
2500  
4000  
6000  
80  
180  
450  
0.4  
0.6  
0.8  
9.7 (.382)  
9.7 (.382)  
10.1 (.398)  
34  
35  
35  
26  
27  
28  
1650  
1650  
1650  
25  
50  
100  
140  
230  
560  
3500  
5000  
7500  
2500  
4000  
6000  
74  
165  
410  
0.4  
0.6  
0.8  
10.5 (.413)  
10.5 (.413)  
11.0 (.433)  
34  
35  
35  
26  
27  
28  
21  
TP C  
Zinc Oxide Varistors  
Electrical Characteristics VE / VF Types  
VOLTAGE-CURRENT CHARACTERISTICS  
V/I characteristics give:  
- for I below 1 mA the maximum leakage current under V  
dc  
- for I above 1 mA the maximum clamping voltage  
U(V)  
VE 07/VF 05  
103  
8
275  
300  
6
230  
250  
210  
4
175  
140  
160  
130  
275  
230  
300  
250  
210  
115  
75  
95  
60  
150  
130  
2
175  
240  
115  
9955  
60  
102  
50  
40  
75  
50  
30  
20  
8
6
35  
40  
30  
20  
25  
17  
14  
4
35  
15  
17  
2
14  
10  
10-5  
10-4  
10-3  
10-2  
10-1  
1
10  
102  
103  
I(A)  
U(V)  
U(V)  
103  
VE 13/VF 10  
VE 09/VF 07  
625  
550  
575  
510  
460  
385  
625  
550  
420  
8
6
103  
575  
510  
275  
230  
300  
250  
210  
175  
420  
385  
8
6
385  
420  
300  
250  
4
420  
275  
230  
275  
230  
300  
250  
150  
130  
385  
210  
175  
300  
250  
140  
115  
4
2
210  
175  
275  
230  
150  
130  
2
130  
115  
150  
130  
95  
60  
210  
175  
140  
115  
75  
95  
160  
115  
75  
35  
95  
60  
150  
130  
95  
102  
50  
35  
60  
102  
175  
50  
50  
40  
75  
50  
8
6
30  
8
60  
40  
30  
20  
40  
25  
17  
6
20  
14  
25  
17  
4
35  
30  
20  
35  
4
14  
25  
17  
30  
20  
25  
17  
2
2
14  
14  
10  
10  
10-5  
10-5  
10-4  
10-3  
10-2  
10-1  
1
10  
102  
103  
10-4  
10-3  
10-2  
10-1  
1
10  
102  
103  
I(A)  
I(A)  
22  
TP C  
Zinc Oxide Varistors  
Electrical Characteristics VE / VF Types  
VOLTAGE-CURRENT CHARACTERISTICS  
U(V)  
VE17/VF14  
625  
575  
550  
103  
510  
420  
460  
625  
385  
575  
550  
8
6
320  
275  
230  
510  
420  
300  
250  
460  
385  
320  
275  
230  
4
150  
130  
175  
300  
280  
140  
115  
95  
150  
130  
175  
140  
115  
2
75  
60  
40  
95  
80  
40  
102  
50  
35  
75  
50  
8
6
30  
20  
25  
17  
4
30  
20  
14  
36  
25  
17  
2
14  
10  
10-5 10-4 10-3 10-2 10-1  
1
10  
102 103  
U(V)  
I(A)  
VE24/VF20  
625  
510  
420  
103  
550  
460  
625  
385  
8
6
320  
275  
230  
510  
420  
550  
46  
300  
250  
0
385  
320  
275  
230  
4
150  
130  
175  
300  
280  
140  
115  
95  
150  
130  
175  
140  
115  
2
75  
95  
102  
75  
8
6
4
2
10  
10-5 10-4 10-3 10-2 10-1  
1
10  
102 103 I(A)  
23  
TP C  
Zinc Oxide Varistors  
Electrical Characteristics VE / VF Types  
MAXIMUM SURGE CURRENT (Ip)  
DERATING CURVES WITH PULSE WIDTH () AND FREQUENCY  
400  
300  
Ip  
(A)  
400  
300  
Ip  
(A)  
VE07M/VF05M Յ 40V  
VE07M/VF05M > 40VRMS  
RMS  
200  
200  
100  
80  
100  
80  
60  
60  
40  
40  
20  
20  
10  
8
6
10  
8
6
4
4
2
2
1
0.8  
0.6  
1
0.8  
0.6  
0.4  
0.2  
0.1  
0.4  
0.2  
0.1  
(µS)  
(µS)  
20  
200  
2.000  
20  
200  
2.000  
10000  
1000  
Ip  
(A)  
VE07P/VF05P130VRMS to 625VRMS  
100  
10  
1
(µS)  
10  
100  
1000  
10000  
24  
TPC  
Zinc Oxide Varistors  
Electrical Characteristics VE / VF Types  
MAXIMUM SURGE CURRENT (Ip)  
DERATING CURVES WITH PULSE WIDTH () AND FREQUENCY  
2.000  
Ip  
(A)  
Ip  
(A)  
800  
600  
400  
300  
200  
VE09M/VF07M  
40V  
>
RMS  
VE09M/VF07M Յ 40V  
1.000  
800  
600  
RMS  
400  
200  
100  
80  
60  
40  
20  
100  
80  
60  
40  
10  
8
20  
6
10  
8
4
2
6
4
2
1
0.8  
0.6  
1
0.4  
0.2  
0.1  
0.8  
0.6  
0.4  
0.2  
(µS)  
(µS)  
20  
200  
2.000  
20  
200  
2.000  
10000  
1000  
Ip  
(A)  
VE09P/VF07P130VRMS to 625VRMS  
100  
10  
1
(µS)  
10  
100  
1000  
10000  
25  
TPC  
Zinc Oxide Varistors  
Electrical Characteristics VE / VF Types  
MAXIMUM SURGE CURRENT (Ip)  
DERATING CURVES WITH PULSE WIDTH () AND FREQUENCY  
Ip  
(A)  
3.000  
2.000  
Ip  
(A)  
500  
400  
300  
VE13M/VF10M 40V  
VE13M/VF10M р 40V  
>
RMS  
RMS  
200  
1.000  
800  
600  
100  
80  
60  
400  
40  
20  
200  
100  
80  
60  
10  
8
6
40  
4
2
20  
10  
8
6
1
0.8  
0.6  
4
0.4  
2
0.2  
1
0.8  
0.6  
0.1  
0.08  
0.06  
0.4  
(µS)  
(µS)  
20  
200  
2.000  
20  
200  
2.000  
10000  
1000  
Ip  
(A)  
VE13P/VF10P 130VRMS to 625VRMS  
100  
10  
1
(µS)  
10000  
10  
100  
1000  
26  
TPC  
Zinc Oxide Varistors  
Electrical Characteristics VE / VF Types  
MAXIMUM SURGE CURRENT (Ip)  
DERATING CURVES WITH PULSE WIDTH () AND FREQUENCY  
Ip  
(A)  
Ip  
(A)  
5.000  
4.000  
3.000  
1.000  
800  
600  
VE17M/VF14M р40V  
VE17M/VF14M > 40 V  
RMS  
RMS  
2.000  
400  
1.000  
800  
200  
600  
100  
80  
60  
400  
200  
40  
100  
80  
20  
60  
10  
8
6
40  
20  
4
10  
8
6
2
1
0.8  
0.6  
4
2
0.4  
0.2  
0.1  
1
0.8  
0.6  
(µS)  
(µS)  
20  
200  
2.000  
20  
200  
2.000  
10000  
1000  
Ip  
(A)  
VE17P/VF14P 130V to 320VRMS  
RMS  
100  
10  
1
(µS)  
10000  
10  
100  
1000  
27  
TPC  
Zinc Oxide Varistors  
Electrical Characteristics VE / VF Types  
MAXIMUM SURGE CURRENT (Ip)  
DERATING CURVES WITH PULSE WIDTH () AND FREQUENCY  
Ip  
(A)  
7.000  
6.000  
5.000  
4.000  
3.000  
VE24M/VF20M >75 VRMS  
2.000  
1.000  
800  
600  
400  
200  
100  
80  
60  
40  
20  
10  
8
6
4
2
1
0.8  
(µS)  
20  
200  
2.000  
10000  
Ip  
(A)  
VE24P/VF20P 130VRMS to 625VRMS  
1000  
100  
10  
1
(µS)  
10000  
10  
100  
1000  
28  
TPC  
Zinc Oxide Varistors  
VN 32 Uncoated Discs  
DIMENSIONS: millimeters (inches)  
Type  
D
d
t
±1.5  
±1  
max.  
VN32M00251K- -  
VN32M02750K- -  
VN32M00321K- -  
VN32M00381K- -  
VN32M00421K- -  
VN32M00461K- -  
VN32M00511K- -  
VN32M00750K- -  
32 (1.26)  
32 (1.26)  
32 (1.26)  
32 (1.26)  
32 (1.26)  
32 (1.26)  
32 (1.26)  
32 (1.26)  
28 (1.10) 2.8 (.110)  
28 (1.10) 3.1 (.122)  
28 (1.10) 3.7 (.146)  
28 (1.10) 4.4 (.173)  
28 (1.10) 4.9 (.193)  
28 (1.10) 5.5 (.217)  
28 (1.10) 6.0 (.236)  
28 (1.10) 6.6 (.260)  
d
D
t
GENERAL CHARACTERISTICS  
Max. operating temperature: +85°C  
Storage temperature: -40°C to +125°C  
Ceramic discs with silver layer on each face  
HOW TO ORDER  
VN32  
M
0
0461  
K
– –  
MARKING  
On packaging only  
Type Material  
RMS  
Operating Voltage  
Tolerance  
Suffix  
REMARK  
Discs of 14 mm and 20 mm available upon request  
PARTICULAR CHARACTERISTICS  
Max. operating  
voltage  
Nominal voltage  
at 1 mA DC  
Clamping voltage  
Vp(V)  
Energy  
1 surge  
(10 x 1000 µs)  
W
Max. peak current  
with insulating coating  
(8 x 20 µs)  
Type  
VRMS  
(V)  
VDC  
(V)  
VR  
(V)  
lp (kA)  
at 2.5 kA at 2.5 kA  
(J )  
1 pulse  
2 pulses  
VN32M00251K- -  
VN32M02750K- -  
VN32M00321K- -  
VN32M00381K- -  
VN32M00421K- -  
VN32M00461K- -  
VN32M00511K- -  
VN32M00750K- -  
250  
275  
320  
380  
420  
460  
510  
575  
330  
369  
420  
500  
560  
615  
675  
730  
390  
430  
510  
610  
680  
750  
820  
910  
970  
1075  
1200  
1350  
1500  
1650  
1800  
2000  
1100  
1230  
1380  
1550  
1700  
1900  
2070  
2300  
200  
260  
300  
350  
400  
450  
500  
550  
25  
25  
25  
25  
25  
25  
25  
25  
15  
15  
15  
15  
15  
15  
15  
15  
VOLTAGE-CURRENT CHARACTERISTICS  
10,000  
5750  
0511  
0461  
0421  
0381  
0321  
2750  
0251  
5
4
2
1,000  
8
5
4
2
100  
10-5  
10-4  
10-3  
10-2  
10-1  
1
10  
100  
1,000  
10,000  
I (A)  
29  
TP C  
Zinc Oxide Varistors  
VB 32 Blocks  
DIMENSIONS millimeters (inches)  
GENERAL CHARACTERISTICS  
Max. operating temperature: +85°C  
Storage temperature: -40°C to +85°C  
15...45°  
5 (.197)  
MOUNTING  
Ø 5 mm holes for screwing  
500 mm long, 6 mm2 insulated copper cables  
5 (.197)  
o 5.1 (.201)  
PACKAGING  
Bulk or three units per box (one for each phase)  
20 (.787)  
44 (1.73)  
20 (.787)  
HOW TO ORDER  
MARKING  
Type  
VB32  
M
0
0421  
K
– –  
AC nominal voltage (EIA code)  
Logo  
Type Material  
RMS  
Operating Voltage  
Tolerance  
Suffix  
PARTICULAR CHARACTERISTICS  
Max. operating  
voltage  
Nominal voltage  
Clamping voltage  
at 2.5 kA  
Energy  
1 surge  
(10 x 1000 µs)  
W
Max. peak current  
with insulating coating  
(8 x 20 µs)  
at 1 mA DC  
Type  
VRMS  
(V)  
VDC  
(V)  
VR  
(V)  
Vp  
(V)  
lp (kA)  
(J )  
1 pulse  
2 pulses  
VB32M00251K- -  
VB32M02750K- -  
VB32M00321K- -  
VB32M00381K- -  
VB32M00421K- -  
VB32M00461K- -  
VB32M00511K- -  
VB32M00750K- -  
250  
275  
320  
380  
420  
460  
510  
575  
330  
390  
430  
510  
610  
680  
750  
820  
910  
970  
1075  
1200  
1350  
1500  
1650  
1800  
2000  
200  
260  
300  
350  
400  
450  
500  
550  
25  
25  
25  
25  
25  
25  
25  
25  
15  
15  
15  
15  
15  
15  
15  
15  
369  
420  
500  
560  
615  
675  
730  
VOLTAGE-CURRENT CHARACTERISTICS  
10,000  
5750  
0511  
0461  
0421  
0381  
0321  
2750  
0251  
5
4
2
1,000  
8
5
4
2
100  
10-5  
10-4  
10-3  
10-2  
10-1  
1
10  
100  
1,000  
10,000  
I (A)  
30  
TP C  
Zinc Oxide Varistors  
Taping Characteristics  
TAPING OF OUR VARISTORS IS MADE ACCORDING TO IEC 286-2  
Types: VE07/09 - VF05/07  
P
p
p
h
h
Marking on  
this side  
Reference plane  
P1  
H1 W2  
H1  
E
H
H0  
W1  
A
B
W0  
W
Adhesive  
tape  
I2  
Direction of unreeling  
t
d
Cross section  
A - B  
D0  
P0  
E
Types: VE13/17 - VF10/14  
p
p
P
h
h
Marking on  
this side  
Reference plane  
H1  
H1 W2  
E
H
H0  
W1  
A
B
W0  
W
Adhesive  
tape  
I2  
Direction of unreeling  
t
d
Cross section  
A - B  
P1  
D0  
P0  
E
DIMENSIONS: millimeters (inches)  
DIMENSIONS: millimeters (inches)  
Dimension Characteristics  
Sprocket holes pitch  
Dimension Characteristics  
Value  
Tolerance  
Value  
Tolerance  
Leading tape width  
18 (.709)  
+1/-0.5  
W
12.7 (0.50)  
±0.3  
P0  
P1  
The hold down tape shall  
not protrude beyond the  
carrier tape  
Distance between the sprocket  
hole axe and the lead axe  
3.8 (.150)  
±0.7  
Adhesive tape width  
Sprocket hole position  
W0  
9
(.354)  
+0.75/-0.5 W1  
Total thickness of tape  
Verticality of components  
Alignment of components  
0.9 (.035) max  
t
Distance between the tops of  
the tape and the adhesive  
0
0
±2  
±2  
p  
h  
3
4
(.118) max  
(.157)  
W2  
Diameter of sprocket hole  
±0.2  
D0  
H
Distance between the tape axis  
and the bottom plane of  
component body  
16/ (.630)/  
or 18 (.709)  
±0.5/  
-0/+2  
Distance between the tape axis  
and the kink  
16/ (.630)/  
or 18 (.709)  
±0.5/  
-0/+2  
H0  
Distance between the tape axis  
and the top of component body  
VE 07/09 - VF 05/07  
33.0 (1.30) max  
45.0 (1.77) max  
H1  
d
VE 13/17 - VF 10/14  
0.6  
0.8  
+10%  
-0.05  
Lead diameter  
(.024) (.031)  
Protrusions beyond the lower  
side of the hold down tape  
5 (.197) max  
I
2
5.08  
(0.20) (0.30)  
12.7 25.4  
(0.50) (0.10)  
7.62  
Lead spacing  
±0.8  
±0.3  
E
p
Components pitch  
31  
TP C  
Zinc Oxide Varistors  
Taping Characteristics  
PACKAGING  
For automatic insertion, the following types can be ordered  
on tape either in AMMOPACK (fan folder) or on REEL in  
accordance to IEC 286-2.  
MISSING COMPONENTS  
A maximum of 3 consecutive components may be missing  
from the bandolier, surrounded by at least 6 filled positions.  
The number of missing components may not exceed 0.5%  
of the total per packing module.  
AMMOPACK  
millimeters (inches)  
REEL  
millimeters (inches)  
360 (14.2)  
52 (2.05)  
31 (1.22)  
– Straight leads  
LEADS CONFIGURATION AND  
PACKAGING SUFFIXES  
The tables below indicate the suffixes to be specified when  
ordering kink and packaging types. For devices on tape, it is  
necessary to specify the height (H or Ho) which is the  
distance between the tape axis (sprocket holes) and the  
sitting plane on the printed circuit board.  
H represents the distance between the sprocket holes axis  
and the bottom plane of component body (base of resin or  
base of stand off).  
– Kinked leads  
Ho represents the distance between the sprocket holes axis  
and the base of the knee.  
Types  
Leads  
VE 07/09 - VF 05/07 (VE13 - VF10 320 V upon request)  
rms  
Straight  
Kinked (type 1)  
Kinked (type 2)  
Dimensions  
0.6 (.024)  
0.6 (.024)  
0.6 (.024)  
5.08 (0.2)  
5.08 (0.2)  
AMMOPACK  
DQ(**)  
5.08 (0.2)  
Packaging  
AMMOPACK  
DA(*)  
REEL  
DB(*)  
DD(**)  
REEL  
DR(**)  
DT  
AMMOPACK  
REEL  
D5(**)  
D6  
H/Ho = 16 ± 0.5  
H/Ho = 18 -0/+2  
D7(**)  
D8  
DC(**)  
DS  
Types  
Leads  
VE 13/17 - VF 10/14  
Kinked (type 1)  
Straight  
Kinked (type 2)  
Dimensions  
0.8 (.031)  
0.8 (.031)  
0.8 (.031)  
7.62 (0.3)  
7.62 (0.3)  
7.62 (0.3)  
Packaging  
AMMOPACK  
EA(*)  
REEL  
EN(*)  
ED(**)  
AMMOPACK  
EC(**)  
REEL  
EF(**)  
EH  
AMMOPACK  
EQ(**)  
REEL  
ER(**)  
ET  
H/Ho = 16 ± 0.5  
H/Ho = 18 -0/+2  
EB(**)  
EG  
ES  
(*) DA, DB, EA, EN suffixes are not available for varistors with V 300V are available only upon request for other types.  
RMS  
(**) Preferred versions according to IEC 286-2  
32  
TP C  
>
300 VRMS  
Zinc Oxide Varistors  
Packaging  
PACKAGING QUANTITIES  
Type  
VE07 - VF05 all  
VE09 - VF07  
Bulk  
AMMOPACK  
1500  
REEL  
1500  
1500  
1000  
1500  
1000  
1000  
< 230 V  
1500  
RMS  
VE09 - VF07  
230 V 300 V  
1000  
RMS  
RMS  
VE09 - VF07  
VE13 - VF10  
> 300 V  
750  
500  
1000  
750  
1000  
750  
RMS  
230 V  
RMS  
VE13 - VF10  
VE13 - VF10  
VE17 - VF14  
VE17 - VF14  
VE17 - VF14  
VE24 - VF20  
> 230 VRMS 300 V  
500  
500  
500  
500  
500  
250  
500  
500  
RMS  
> 300 V  
RMS  
230 V  
750  
500  
750  
500  
RMS  
> 230 VRMS 300 V  
RMS  
> 300 V  
RMS  
IDENTIFICATION - TRACEABILITY  
On the packaging of all shipped varistors, you will find a bar code label.  
This label gives systematic information on the type of product, part number, lot number,  
manufacturing date and quantity.  
An example is given below:  
Lot number  
Manufacturing date (YYMMDD)  
Quantity per packaging  
Part number  
This information allows complete traceability of the entire manufacturing process,  
from raw materials to final inspection.  
This is extremely useful for any information request.  
33  
TP C  
Zinc Oxide Varistors  
Quality  
The system includes:  
QUALITY SYSTEM  
A high level of performance, quality and service has been  
achieved in setting up a quality system based on the ISO  
9000 standard.  
• A quality manual ensuring the proper organization  
Incoming inspection  
• Manufacturing process control and final inspection as  
described on page 35  
• Reliability tests according to IEC 68 and CECC 42000  
standards as described on page 36  
• Continuous improvement programs  
APPROVALS  
The quality of our products and organization has been recognized by the following approvals:  
ISO 9002  
Certificate of approval n° 928373  
CECC, EN100114-1  
Certificate of approval of manufacturer n° 004-96  
CECC 42201-005  
Qualification approval certificate N° 96-024  
All VE/VF types  
VDE  
Certificate of approval n° 94763E  
All VE/VF types with V from 25V to 575V  
RMS  
Underwriters Laboratories, Inc./Canadian Standards Association  
• UL 1449 Transient Voltage Surge Suppressors  
File E 84108 (S)  
• UL 1414 - Across the line components  
File 184 051  
All types VE/VF with V from 130V to 275V  
RMS  
List GAM T1  
Types VB1 (VE09) to VB4 (VE24)  
List LNZ 44004  
Types EPV-7A (VE09) to EPV-20A (VE24)  
34  
TP C  
Zinc Oxide Varistors  
Manufacturing Process and Quality Assurance  
Weight: every batch  
Raw material incoming  
Grinding  
Grinding time: every batch  
Density and viscosity: 1 time per batch  
Temperature, pressure, particle size: every batch  
Weight, mixing time, moist: every batch  
Mixing  
Spray drying  
Mixing  
Every batch by sampling - Voltage/current characteristics  
degradation, physical characteristics  
Electrical test  
Pressing  
Weight, thickness, visual inspection: every batch  
by sampling  
Thermal cycle: every batch  
Visual inspection 100%  
Binder burn out  
Stacking  
Thermal cycle: every batch  
Sintering  
Every batch by sampling: physical characteristics, capacitance,  
V1mA, leakage current, clamping voltage, degradation  
Electrical test  
Silvering  
Visual inspection: every batch 100%  
Thermal cycle: every batch  
Silver firing  
Temperature, visual inspection: every batch 100%.  
Every batch by sampling: spacing between leads  
Soldering  
Thermal cycle: every batch  
Cleaning  
Thermal cycle, visual inspection: every batch by sampling  
Visual inspection: every batch 100%  
Coating  
Marking  
Thermal cycle: every batch  
Polymerization  
Cutting leads  
Final control  
Quality control  
Packaging  
Visual inspection lead length: every batch by sampling  
Electrical: every batch 100%: V1mA; leakage current:  
sampling. Visual: every batch 100%, aspect, marking  
Every batch by sampling. AQL: V1mA, leakage current  
clamping voltage, visual inspection, dimensions, solderability  
Bulk: every batch pieces quantity. On tape: batch by  
sampling, visual inspection of taping  
Every batch, taping dimensions, missing parts, taping  
defects, label check  
Packaging Quality Control  
Shipping consignment  
Outgoing shipping - Verification  
Every batch, every shipment, packaging, documentation  
35  
TP C  
Zinc Oxide Varistors  
Reliability  
PRODUCT QUALITY ASSURANCE  
RELIABILITY  
TPC has a Quality System that complies with the ISO &  
CECC quality requirements.  
TPC varistors are subjected to reliability tests stated in page  
37 (per CECC 42000).  
All products are tested and released by the quality depart-  
ment based on the compliance to established customer  
specifications. Critical raw materials are inspected for dimen-  
sional, electrical and physical properties prior to releasing to  
the production floor.  
Life test is conducted to determine the life time of varistors.  
The test conditions used are stated in page 00. The varistors  
are subjected to these conditions for a minimum period of  
1000 hours.  
Failure in time (FIT) is computed for all tested parts based on  
Arrhenius equation. The definition of failure is a shift in the  
nominal voltage exceeding ± 10%. The FIT calculation is  
computed in units of 10-9/h.  
Routine checks are carried out at crucial processes. The  
finished products are submitted to Quality Control for inspec-  
tion on electrical, dimensional, physical & visual conformance  
to relevant specifications, based on established AQLs.  
Figures below give the FIT for low and high voltage varistors.  
The FIT values at various stresses are extrapolated based  
on Arrhenius equation.  
The average outgoing quality level is < 10ppm on TPC  
varistors. The low ppm value is applicable for total function-  
al failures, i.e. short circuit and open circuit.  
FIT OF VARISTORS (Vrms > 40 V)  
100,000  
1.0 VRMS  
0.9 VRMS  
10,000  
0.8 VRMS  
0.7 VRMS  
1,000  
100  
10  
1
40  
60  
80  
100  
120  
Temperature (°C)  
FIT OF VARISTORS (Vrms </= 40 V)  
1,000,000  
100,000  
10,000  
1.0 VRMS  
0.9 VRMS  
0.8 VRMS  
0.7 VRMS  
1,000  
100  
10  
1
20  
40  
60  
80  
100  
120  
Temperature (°C)  
36  
TP C  
Zinc Oxide Varistors  
Reliability  
Test Description  
Test Condition  
Test Requirement  
SURGE CURRENT DERATING  
8/20 MICRO SECONDS  
CECC 42000, Test C 2.1  
• I Delta V/V (1 mA) I max 10%  
Measured in the direction of the  
surge current  
100 surge currents (8/20 µs), unipolar,  
interval 30 s, amplitude corresponding  
to derating curve for 20 µs.  
• No visible damage  
SURGE CURRENT DERATING  
10/1000 MICRO SECONDS  
CECC 42000, Test C 2.1  
• I Delta V/V (1 mA) I max 10%  
Measured in the direction of the  
surge current  
100 surge currents (10/1000 µs), unipolar,  
interval 120 s, amplitude corresponding  
to derating curve for 1000 µs.  
• No visible damage  
RESISTANCE TO SOLDERING  
HEAT  
IEC 68-2-20, Test Tb Method 1A  
260°C, 5 s  
• I Delta V/V (1 mA) I max 5%  
RAPID CHANGE IN  
TEMPERATURE  
IEC 68-2-14, Test Na  
• I Delta V/V (1 mA) I max 5%  
• No visible damage  
Ta = -40°C; Tb = +85°C  
Duration: 1 Hr/cycle  
Total: 5 cycles  
SHOCK  
IEC 68-2-27, Test Ea  
• I Delta V/V (1 mA) I max 5%  
• No visible damage  
Pulse shape: half sine  
Acceleration: 490 m/s/s  
Pulse duration: 11 ms  
3 x 6 shocks  
VIBRATION  
IEC 68-2-6, Test Fc Method B4  
Freq. range: 10 Hz ... 55 Hz  
Amplitude: 0.75 mm or 98 m/s/s  
Duration: 6 h (3 x 2 h)  
• I Delta V/V (1 mA) I max 5%  
• No visible damage  
CLIMATIC SEQUENCE  
CECC 42000, Test 4.16  
a) Dry heat - Test Ba  
• I Delta V/V (1 mA) I max 10%  
Insulation Resistance min 1 Mohm  
Temperature / Duration: 125°C / 2 h  
b) Damp heat cyclic 1st cycle - Test Db  
Temperature / Duration: 55°C / 24 h  
Humidity: 95-100% RH  
c) Cold - Test Aa  
Temperature / Duration: -40°C / 2 h  
d) Damp heat cyclic test remaining  
5 humidity cycles - Test Db  
Duration: 24 h/cycle  
LIFE TEST  
CECC 42000, Test 4.20  
Applied voltage: max continuous a.c.  
Voltage, continuous application  
Temperature / Duration: 85°C / 1000 h  
IEC 68-2-3  
• I Delta V/V (1 mA) I max 10%  
Insulation Resistance min 10 Mohm  
• I Delta V/V (1 mA) I max 10%  
DAMP HEAT, STEADY STATE  
Temperature / Duration: 40°C / 56 days  
Humidity: 93%  
Insulation Resistance min 1 Mohm  
• Burning max 10 s  
FLAMMABILITY -  
IEC 695-2-2  
NEEDLE FLAME TEST  
TEMPERATURE COEFFICIENT  
OF VOLTAGE  
Vertical application: 10 s  
Current: 1 mA  
• - (0.09%/K) max  
Temperature: -40°C / +25°C / +85°C  
37  
TP C  
USA  
EUROPE  
ASIA-PACIFIC  
AVX Myrtle Beach, SC  
Corporate Offices  
AVX Limited, England  
European Headquarters  
AVX/Kyocera, Singapore  
Asia-Pacific Headquarters  
Tel: 843-448-9411  
FAX: 843-448-1943  
Tel: ++44 (0)1252 770000  
FAX: ++44 (0)1252 770001  
Tel: (65) 258-2833  
FAX: (65) 350-4880  
AVX Northwest, WA  
AVX S.A., France  
AVX/Kyocera, Hong Kong  
Tel: 360-669-8746  
FAX: 360-699-8751  
Tel: ++33 (1) 69.18.46.00  
FAX: ++33 (1) 69.28.73.87  
Tel: (852) 2-363-3303  
FAX: (852) 2-765-8185  
AVX North Central, IN  
AVX GmbH, Germany - AVX  
AVX/Kyocera, Korea  
Tel: 317-848-7153  
FAX: 317-844-9314  
Tel: ++49 (0) 8131 9004-0  
FAX: ++49 (0) 8131 9004-44  
Tel: (82) 2-785-6504  
FAX: (82) 2-784-5411  
AVX Northeast, MA  
AVX GmbH, Germany - Elco  
AVX/Kyocera, Taiwan  
Tel: 508-485-8114  
FAX: 508-485-8471  
Tel: ++49 (0) 2741 2990  
FAX: ++49 (0) 2741 299133  
Tel: (886) 2-2696-4636  
FAX: (886) 2-2696-4237  
AVX/Kyocera, China  
AVX Mid-Pacific, CA  
AVX srl, Italy  
Tel: (86) 21-6249-0314-16  
FAX: (86) 21-6249-0313  
Tel: 408-436-5400  
FAX: 408-437-1500  
Tel: ++390 (0)2 614571  
FAX: ++390 (0)2 614 2576  
AVX/Kyocera, Malaysia  
AVX Southwest, AZ  
AVX sro, Czech Republic  
Tel: (60) 4-228-1190  
FAX: (60) 4-228-1196  
Tel: 602-539-1496  
FAX: 602-539-1501  
Tel: ++420 (0)467 558340  
FAX: ++420 (0)467 558345  
Elco, J apan  
AVX South Central, TX  
Tel: 045-943-2906/7  
FAX: 045-943-2910  
Tel: 972-669-1223  
FAX: 972-669-2090  
Kyocera, J apan - AVX  
AVX Southeast, NC  
Tel: (81) 75-604-3426  
FAX: (81) 75-604-3425  
Tel: 919-878-6357  
FAX: 919-878-6462  
Kyocera, J apan - KDP  
AVX Canada  
Tel: (81) 75-604-3424  
FAX: (81) 75-604-3425  
Tel: 905-564-8959  
FAX: 905-564-9728  
Contact:  
A KYOCERA GROUP COMPANY  
http://www.avxcorp.com  
S-ZOV00M999-C  

相关型号:

VE07P00131KDD

Varistor, 170V, 8.5J, Through Hole Mount
KYOCERA AVX

VE07P00131KDQ

Varistor, 170V, 8.5J, Through Hole Mount
KYOCERA AVX

VE07P00131KDT

Varistor, 170V, 8.5J, Through Hole Mount
KYOCERA AVX

VE07P00141K

VE/VF Types for Heavy Duty Applications (P Series)
KYOCERA AVX

VE07P00141KD5

Varistor, 180V, 9J, Through Hole Mount
KYOCERA AVX

VE07P00141KD7

Varistor, 180V, 9J, Through Hole Mount
KYOCERA AVX